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Wastewater tmt. derived GHG

Table 8-1: Enussions from Waste (Tg CO, Eq.)

Gas/Source 1990 1995 2000 2001 2002 2003 2004 2005 2006
CH, 172.9 169.1 146.7 143.0 1455 151.0 148.1 149.0 151.1
Landfills 149.6 144.0 1208 117.6 120.1 125.6 122.6  123.7 1257
Wastewater Treatment 23.0 24.3 24.6 24.2 24.1 23.9 24.0 23.8 239
Composting 0.3 0.7 1.3 1.3 1.3 1.5 1.6 1.6 1.6
N,O 6.6 7.7 8.9 9.2 9.0 9.3 9.6 9.7 9.9
Domestic Wastewater 6.3 6.9 7.6 7.8 7.6 7.7 7.8 3.0 3.1
Treatment
Composting 0.4 0.8 1.4 14 1.4 1.6 1.7 1,7 1.8
Total 179.6 176.8 155.6 152.1 1545 160.3 157.7 158.7 161.0

Note: Totals may not sum due to independent rounding.

From This is equivalent
denitrification in to 900,000

anoxic or non-

passenger cars
aerated zones

added each year

Source: USEPA GHG Soutces and Sinks Inventory, 2008 Gt?



Domestic wastewater N,O
emission estimates

N2Ororar = NoOpraer T NoOgrrmvmar
N2Opranr = NoOyrripaar T N2Owour sarear
NoOyrrozmar = [(USsommn) % EFa % Fopeon] * 1/1079
N>Owovrrromar = {L(USpee < WWTP) - USomn* Fopcon * EF1} = 1/1079

NoOggrvmr = {[(USpee * Protein * Figg % Fuoncon * Fomcon) = Newwpez] * EF3 = 44/28} < 1/10%6

. EF1=3.2 g N,O/PE/year
« EF2=7.0 g N,O/PE /year
 EF3=0.005 kg N,O -N/kg sewage-N produced

Source: USEPA GHG Sources and Sinks Inventory, 2008
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This presentation focuses on

* N,O emissions from different wastewater treatment
process configurations

* Insights to molecular phenomena linked with N,O and
NO production in V. europaea

* Impact of partial nitrification OR organic carbon source
on N,O production via denitrification



Role of nitrification and
denitrification in N,O emissions

N,O production mainly N,O production and consumption
High N,O emission expected Low N,O emission expected
Influent
Aerobic Anoxic +——

* Based on known mechanisms, significantly higher
emissions from aerated zones expected

* How does this influence the way we have been
thinking about N,O emissions from WWTPs?



Development of a standardized
protocol for measurement

Methods in
ENZYMOLOGY

Volume 486

Research on Nitrification
illlli I:('Iilli‘{l ])['ili'l'."‘:"l'.“‘.

Part A

Martin G. Klotz

Chandran, 2011

Protocol has been reviewed
by US EPA and is now being
implemented nationwide

Shared with other teams
around the globe via GWRC



Summary of emissions

Avg. reactor  Avg. reactor

. . influent TK effluent TN % influ_ent % remoyed Emission
Plant Configuration Temp(°C) N load load Q (MGD) TKN emitted TKN emitted factor
(g-N/day) (g-N/day) as N,O as N,O (g N,O/PElyr)
15+ 0.48 1.8 x 106 3.6x10° 23 0.03+0.00 0.03+0.01 1.2+0.18
Separate-stage BNR
23 +0.28 2.3 x 106 4.3 x 10° 27 0.01 +0.00 0.01 +£0.00 0.28 +0.13
14 £ 0.26 8.6 x 10° 1.7 x10° 7.8 0.16 £0.10 0.19+0.12 9.8+6.1
Four-stage Bardenpho
23 +0.20 7.4 x 105 7.6 x 10* 8.1 0.60 =+ 0.29 0.66 + 0.32 33+16
Step-feed BNR 1 19+ 0.22 3.1x 106 1.4 x 106 29 1.6+0.83 29+15 92 +£47
25+ 0.28 2.9 x 106 9.4 10° 30 0.62 =+ 0.27 0.90 + 0.39 33+14
Step-feed non-BNR 17+ 0.12 8.6 x 106 4.4 x 106 71 0.18+0.18 0.37+0.36 13+13
26 +0.81 8.9 x 106 4.2 x 106 93 1.8+0.79 3.3+15 97 +£43
Separate centrate 30+23 8.8 x 106 5.5 x 106 2.0 0.24 +0.02 0.63 +0.06 590 + 53
34 +0.32 8.5 x 106 4.2 x 106 1.6 0.54 +0.16 0.96 + 0.32 1600 + 500
Plug-flow 1 11+0.20 1.8 x 106 1.0 x 106 18 0.40+0.14 0.92+0.32 23+79
23 +0.46 1.8 x 106 7.3 x10° 15 0.41+0.14 0.70 £ 0.24 28 £ 9.6
Plug-flow 2 11+041 6.3 x 10° 4.0x10° 8.7 0.62 +0.15 1.7+041 26+6.4
22 +0.58 6.6 x 10° 4.0 x 10° 6.6 0.09 + 0.03 0.22 + 0.06 5.0+1.4
MLE 1 22+0.28 7.3x10° 1.3x10° 4.0 0.44 +0.37 0.54 +0.45 47 + 39
26+1.8 6.8x10° 1.9 x 10° 4.0 0.07 = 0.04 0.09 + 0.05 6.8 +3.5
MLE 2 21+0.72 5.9x10° 1.2 x10° 3.3 0.07 £0.02 0.09 +0.02 74+17
26 +0.17 6.9 x 10° 1.5x 10° 4.1 0.06 = 0.02 0.07 + 0.03 54+20
Step-feed BNR 2 29 +0.18 2.2 x 106 2.9 x 10° 14 1.5+0.02 1.7+ 0.02 140+ 1.2
Oxidation ditch 14 + 0.58 3.7x10° 1.8 x 10° 3.3 0.10 £ 0.03 0.19 + 0.06 6.1+1.9
19 + 0.58 3.9x10° 4.3 x10% 3.4 0.03+0.01 0.03+0.01 1.8+0.77
Step-feed BNR 3 20£1.8 45x108 7.3x10° 40 0.14 £ 0.02 0.17 +0.03 93+15
24 +0.78 7.8 x 106 8.6 x 10° 57 0.05 + 0.03 0.06 + 0.03 41+2.2

However, these do not convey the complete picture

(50



Relative emissions from aerated and non-aerated zones
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Spatial variability in N,O emissions

Zone3 ) Zone2
(Aerobic) (Aerobic)
Ammonia(ppm-N) | 1.5 +0.71 11.5 £4.95 14
Nitrite (ppm-N) | 0.003 £0.001 0.002 £0.003
Nitrate (ppm-N) | 10,15 +0.21 2.65 +0.35 0.85 +£0.07
DO (mg-O2/L) 4.2 2.3 0.1
ORP (mV) 55.9 -10 -172
pH 7.1 7.12 7.02
Temp (°C) 29.5 29.3 29.1
@%‘ée.ﬁuzso '\)'20 572.55 192.16 54.9




Diurnal variability in N,O emissions
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Near perfect correlation with diurnal NH,;, NO, and NO; conc.
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Summary

High-degree of variability in emissions observed

N,O emissions from aerobic zones were consistently higher
than from anoxic zones

Based on multivariate regression and data mining

— High ammonia, nitrite and DO conc. positively correlated with
N,O fluxes

— High DO and nitrite conc. together correlated positively with N,O
fluxes
N,O emissions are related to inadequate design and
operation of BNR processes

— There is no conflict between water quality and air quality, rather
they go hand in hand

— N,O emissions can be used as an indicator of process upsets

5 0



What are the mechanisms linked to N,O and NO
generation by nitrifying bacteria?

Hypotheses
Periplasm Membrane Cytoplasm
U gt NHZOH * 1,0 — Anoxic conditions stimulate
- @ the co- expression of nirK

26 NH, + 0, + H*

and norBin N. europaea
| e and thus, NO and N,O

Q_l/)@“ production.

Nor

2 — Upon recovery back to
aerobic conditions, the
trends are reversed.

Yu et al., 2010 15@1':7



Chemostat operation

V=4L
HRT=SRT=2.2d

Transient anoxic period = 48h, followed by
about 80 h recovery

Sono = 280 mg-N/L at steady state
S.n.0=28, 140, 280 mg-N/L during transient
state

— To determine the impact of S_, accumulation on
response and recovery

‘W



Short term change in DO-
Nitrification
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300 R X
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Fold change in relative functional

Fold change in relative functional

gene erxpression

gene erxpression
-

--amoA - hao <-nirK

0.01

L

-amoh & hao <-nirK

10

0.1

0.01

time {h)

‘rnorB

rnorB

-“+amohA = hao =-mirK ‘rnorB

Foldchange in relative functional
gene erxpression

0.01
time (h)

* Nitrite reductase was by far the
most responsive to0 anoxic-oxic
cycling

— nirK=» NO

* nirK and norB are not co-
expressed

* Gene level imbalances are linked
to process level N,O inventories

0 7,



Adaptation to repeated anoxic-
oxic cycling
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The quest for cost effective BNR

Engineering microbial communities

September 4-10, 2001
: Maw Hywan
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Factors correlating with N,O emissions

from nitrification

¢ Kl’lOWl’l triggefs fOl‘ NzO Periplasm Membrane
from nitrification ano, MMM
— High nitrite Amo

concentrations

> ua

— Low DO concentrations

2e

TN

and cycling from anoxic
to oxic conditions

— High ammonia

Cytoplasm

NH,OH + H,0

4

+
NH,+0, +H

0.50, + H*

H,0

concentration transients

2H*

Ahnetal., 2011

Do we need to re-think partial nitrification based N-removal strategies?,,

© 0,



Reactor Operation

V=11.18 d, HRT=1.1d, pH=7.5 0.1, T=21°C
Pre-study partial-nitrification phase

_ SRT =3d, DO =15+ 0.87 mg O,/L
Full-nitrification phase

— SRT=8d, DO = 3.8 + 0.38 mg O,/L, 104 days
Partial-nitrification phase

— SRT=3d, DO =1.1 £ 0.38 mg O,/L, 273 days
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changing operating
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during PN
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Impact of changing operating conditions

5.EH9

4.EH9
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* PN mode led to significant washout of NOB

* No change in dominant AOB speciation

XNOB(copies//ml)

— Nitrosomonas europaea and eutropha dominant AOB in
both phases (not shown)
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Impact on N,O and NO emissions
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* Highest emissions observed just after switch from full nitrification to
partial nitrification

— However, emissions during PN were not sustained — subsided and stabilized
after 80 days

— Stabilized emissions during PN still statistically higher than during FIN
(a=0.05)
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Why does PN result in higher emissions?
Insights from gene expression profiles
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The switch from FN to PN resulted in spikes in expression of nirK and norB

— nirK=» NO norB = N,O

Good agreement between gene expression and chemical profiles



Summary

e Statistically higher emissions of N,O and NO
during PN than during FIN

* Highest emissions close to the point of switching
modes from FN to PN

— Gaseous emissions observed even after rapid change in
aqueous N-speciation
* Spikes in gaseous emissions were linked to spikes
in expression of genes coding for their production
in AOB (nirK and norB)

— Microbes tend to adapt!



To put matters in perspective

* PN offers significant benefits in terms of lower
operating costs
— Nitrification as well as downstream removal via
denitrification or anammox
* Higher N,O emissions from PN operation for treating
stteams such as centrate and leachate represents an
optimization challenge

* Additional analyses such as LCA could be useful in
decision making on a case-specific and site-specific
basis

— Poor performance remains a bigger factor for higher
emissions

kv,



Role of different electron donors on N,O and
NO emissions

NaR NiR NOR N,OR
NO, ——-- NO, —-—-- NO T ———-- N,O T - N, T
N@EV) NEIID NI NGD N(0)
ACEt ate Me(i)rl‘-lr(;:g:::lers
MeOH EtOH

WS

= E:n

* Different electron donors give rise to different p_ . _and K for denitrification on
— Response to different transient stressors needs to be systematically studied
— Different susceptibilities = different emissions?

Lu and Chandran, 2010

kv o,



Experimental setup

* Transient stressors
— Organic carbon limitation COD:N = 2.5:1
— Exposure to high nitrite concentration spike: 50mg-N /L
— Oxygen Inhibition
DO = 2-3 mg/L, 5-6 mg/L, 7-9 mg/L

 USEPA reviewed gas phase monitoring protocol



Impact on methanol based denitrification

Carbon o |
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* Minimal N,0O and NO emissions
— COD limitation: transient NO;” accumulation
— NO, pulse: transient NO;™ accumulation

— High DO: permanent NO;" accumulation
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Lu and Chandran, 2010 dp



Impact on ethanol based denitrification (I)

Steady State
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Minimal N,O and NO emissions with transient and finite peaks

Lu and Chandran, 2010 dp



Nitrate and Nitrite (mgN/L)

Impact on ethanol based denitrification (I1I)

Steady state
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N,O and NO emissions increased with DO concentration

N,O emission peak: correlated with peak NO;™ concentration

Transient accumulation of NO; : increased with DO concentration

Permanent accumulation of NO, : increased with DO concentration



Gas emissions from
methanol-denitrification

0.2% -
@ ON20
%o @ NO
S &
20
EZ o,
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£
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Steady Carbon Nitrite 2-3mg0,l. 56mgO.JL 7-8mgO,/L
State lmitattion accumulation

* Approximately 0.12% and 0.05% of influent NO;-N load converted to
N,O and NO, respectively at steady state

* Statistically similar emissions in

— Control, carbon limitation, NO,-N exposure, O, inhibition

Lu and Chandran, 2010 dp



Gas emissions from
ethanol-denitrification

8.0%

ON20

6.0% A BNO

4.0%

2.0% ~

Percentage of influent nitrate
emitted as N20

*

- 0.06%

- 0.04%

- 0.02%

Carbon Nitrite  2-3mgO,/L 56mgO,L 7-9mgO,/L

MJJJJ

Imitation accumulation

0.08%

Percentage of influent nitrate
emitted as NO

0.00%

Approximately 0.10% and 0.01% of influent NO;™-N load converted to N,O

and NO, respectively at steady state

Statistically similar emissions in

— Control, carbon limitation, NO,-N exposure

Significantly higher N,O and or NO emissions at DO > 5mg O,/L

Lu and Chandran, 2010



Implications

* Emissions related to denitrification are dependent

upon the organic C-sources used

— the microbial ecology and kinetics thus fostered
— relative susceptibility and tolerance to stressors

* Organic C-limitation and nitrite toxicity played a
minor role in emissions from both methanol and
ethanol

— Partial inhibition resulted in N,O emissions (ethanol)

— Higher inhibition led to low emission (methanol)



Implications for pre-anoxic
Zone s1zing

Nitrification Denitrification

Ethanol bleed out to aerobic zone can result in N,O and
NO emissions

Lower emissions expected during similar methanol bleed
out



Summary of observations

Started with one or two emission factors in 2008

N,O emissions related to recovery from stress response of
nitrifying bacteria
— Similar patterns observed at full-scale

— Attributed to an imbalance between the expression of specific
pathways in AOB

Next: Based on mechanisms, develop BNR strategies to
minimize both agqueous and gaseous N discharges

Influent ww
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