Minimizing Storm Water Runoff Impacts to Streams and Rivers through Targeted Flow Thresholds: The Biological Relevance of Qcritical.

Chicago Metropolitan Water Reclamation District Seminar Series Stickney Water Reclamation Plant Cicero, IL July 28, 2017

Matthew S. Wooten¹, Robert J. Hawley², Katherine R. MacMannis² and Elizabeth V. Fet¹

¹Sanitation District No. 1 Northern Kentucky (SD1), Fort Wright, KY, ²Sustainable Streams, LLC, Louisville, KY.

Background

Outline

Monitoring

Approach

• Results

Application

Why do we manage storm water runoff?

- Historically—
 - Flood Control
 - Narrative
 - Presumptive Approach
 - "Design Storms"

- No Consideration
 - Water Quality
 - Channel Protection
 - Stream Integrity
 - Ecological
 - Hydrological
 - Geomorphological

***Storm water runoff often considered one of the most serious threats to the integrity of our rivers and streams!

Why?

- Impacts of flow alteration well established
 - Changes to flow regime (Poff et al, 1997)
 - Urban Stream Syndrome (Walsh et al, 2005)
 - Stream Function Pyramid (Harman et al, 2012)

Biological Physicochemical Geomorphology **Hydraulics** Hydrology **Storm Water Controls**

Potential Barriers

- Lack of Goals?
- Lack of Targets?
- Lack of Thresholds?
- Regional Variability?
- Lack of Baseline Condition?
- Other Complexities?
 - Social, financial, political.....

Stream Assessment Program

Storm Water Utility

- 30 cities and 3 counties
- 223 square mile service area
- 400 miles of storm lines
- 30,000 structures
- ~75 sites:
 - Water Quality
 - Biology
 - Physical Habitat
 - Stream Stability (Hydromod)

Baselines....

Baselines....(cont)

Community Structure Changes

OFIC LICCOT LLCCEALL

Establish Thresholds

τ

 τ_{c}

Analysis of the 2-yr, 2-hr storm from Fort Collins, CO by Bledsoe (2002), Journal of Water Resources Planning and Management

Establish Relevance

Shorter Riffles Deeper and Longer Pools

Hawley et al., Geomorphology, July 2013

Biological Relevance of Q_{critical}

-Impacts in index scores, EPT and overall richness

Cluster Analysis

- Clear separation in MDC5.5 2011
- No node reconnection until 25% variability remaining

Adapted from Hawley et al. (2016)

Reducing Risk to Our Rivers-A Framework

Identify thresholds
Starting point in absence of data

Hydrogeomorphic and Ecohydrological goals to preserve geomorphically and ecologically relevant aspects of the natural flow regime

Hydraulics

Hydrology

Geomorphology

Adatped from Hawley and Vietz (2016), Freshwater Science

Boulder: Duration controls for larger events (>2-y storm) are likely to be more important than conventional channel protection controls that focus on the 1-y storm and smaller.

Cobble: A threshold-type management approach could be efficacious. Effective discharge could be sub-bankfull to an overbank event.

Gravel: Broad range (Qc, 0.001 - 1), typically sub-bankfull flows, warrants a geomorphic investigation of appropriate targets for the system. Management approaches may range from hydrologic mimicry of specific flow ranges to threshold-type approaches, which manage excess volume and releases to below the Qc.

Sand: Hydrologic mimicry may be very important for channel stability. Effective discharge analyses may indicate that channel protection controls should focus on duration controls for relatively frequent flows (<< 1-y storm).

Implementation

- Pilot Project 1-"Detain H20"
 - Basin Retrofitting
 - P3-Toyota, SD1, USEPA, Boone County Conservation District
- Pilot Project 2-"Horse Branch"
 - Watershed Scale
 - Multiple optimizations
 - Municipalities

Detain H20

- Detention Basin Retrofit
- Passive
- ~25 acres DA
 ~50% impervious
- Reduce erosive power
- Maintain flood control
- Pre-post flow monitoring
- Three in-stream monitoring stations

Hawley et al (2017)

DATA NULLES

Hawley et al (2017)

Horse Branch

- Watershed Based
 - >20% impervious
- Multiple concerns
 - Stream bank erosion
 - Stream incision
 - Transportation infrastructure
 - Utility infrastructure
 - Stream quality
- Multiple solutions
- Municipal cooperation

Stability Concerns

Success Monitoring

Opportunities for a Watershed Approach

- Improve physical, chemical, and biological integrity
- Stakeholder engagement, awareness, and participation
 - Cities, utilities, etc.
- Likelihood for in-stream success
 - relatively small watershed
 - only 20% impervious

Wrapping up

- Storm water runoff
 - Substantial threat
- Alters flow and disturbance regime
- Biologically relevant
- Protecting Streams and Rivers
 "Low hanging fruit"

AFIAAIAAF AAAF DII

I'm often asked why I do what I do, I simply grin, and show folks this photo.....

and the state