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BEFORE WE BEGIN

SAFETY PRECAUTIONS
— PLEASE FOLLOW EXIT SIGN IN CASE OF EMERGENCY EVALUATION
— AUTOMATED EXTERNAL DEFIBRILLATOR (AED) LOCATED OUTSIDE

PLEASE SILENCE CELL PHONES OR SMART PHONES
QUESTION AND ANSWER SESSION WILL FOLLOW PRESENTATION
PLEASE FILL EVALUATION FORM

SEMINAR SLIDES WILL BE POSTED ON MWRD WEBSITE  (www.
MWRD.org: Home Page = Reports = M&R Data and Reports
—> M&R Seminar Series = 2017 Seminar Series)

STREAM VIDEO WILL BE AVAILABLE ON MWRD WEBSITE
(www.MWRD.org: Home Page = MWRDGC RSS Feeds)
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An SAB Original Study

Undertaken to provide advice to EPA, from a scientific
perspective, on managing problems caused by excess
reactive nitrogen (Nr) in the environment.

Analyzes the inputs and flows of reactive nitrogen in the
U.S.

Recommends new risk reduction strategies to improve
upon traditional media-specific regulatory and
nonregulatory approaches.

Recommends using the movement of nitrogen among
environmental reservoirs in multiple ecosystems and media
(the Nitrogen Cascade) as a framework for understanding
and more effectively managing reactive nitrogen.
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What is Reactive Nitrogen (Nr)?

All chemical forms of nitrogen, except N,

Examples: NH;-NH,*, N,O, NO, NO2, NO,", NO;’
Organic-N
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The nitrogen cascade
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Visibility/Smog-Ozone Formation

Grand Canyon, AZ

Los Angeles, CA



Coastal Hypoxia/Pollution of Fresh Waters

Algal Mat, Lake Erie



World Hypoxic and Eutrophic Coastal Areas
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Recommendations...

e 24 Recommendations
— 4 overarching recommendations

— 20 specific findings & recommendations
addressing air, water, and land use issues,
monitoring, research, and education

5 Management goals



Overarching SAB Recommendations

The nitrogen cascade should be used as a framework to
understand the environmental impacts of reactive

nitrg_gen as it moves through multiple ecosystems and
media.

Inte%rated cross-media management approaches and
regulatory structures are needed to recognize tradeoffs
and focus management efforts at points of the nitrogen
cascade where they are most efficient and cost effective.

EPA should form an intra-Agency Nr management task
force to build on the existing breadth of Nr research and
management capabilities within the Agency.

EPA should convene an inter-Agency Nr management
task force to coordinate federal programs that address Nr
monitoring, modeling, research, and management.



Near Term Goals for Management Action

® The SAB estimates that a 25% reduction in Nr introduced into
the U.S. environment might be achieved with existing
technology in the coming 10-20 years through actions that
could be taken by EPA and other management authorities.

— Expanded efforts to control emissions of NO, from mobile sources and
power plants could decrease the generation of Nr by 2.0 Tg/yr.

— Increased crop uptake efficiencies (through advances in fertilizer
technology) could further decrease Nr releases by 2.4.Tg/yr.

— Livestock-derived NH, emissions could be decreased by 0.5 Tg/yr
through a combination of BMPs and engineered solutions, and NH,
emissions from fertilizer application could be decreased by 0.2 Tg/yr
through BMPs related to application rate and timing.
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Why do we need reactive nitrogen?

« Human Nr requirement = 4.3
kg/cap/yr

e US=1.4Tglyr

 World =28 Tglyr
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Sources of reactive nitrogen introduced Into
the US In 2002 (Tg N/yr)
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Long Term Trends...

Nitrogeninput to US (Tg N yr?)
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(52% decline from 1990-2011)
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Major (US) federal laws for
managing nitrogen

(1990) regulates NO, emitted into
atmospheric systems, but not NH,

(1977) regulates NH; and total Nr released
Into aquatic systems

(1996) regulates NO,; and NO,, In
potable waters

(2007) requires the setting of biofuel
standards based on life cycle assessment
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US ammonia emissions
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44%
Poultry, 27%

Sheep and lambs,
0.60%

Refrigeration, 5%
Fertilizer Application,

Combustion, 9%
1% Humans, 1% POTWs, 2%

Source: Battye et al. 1994



US Milk Production, 1970-2006
| —e— Total milk (billion ka) I
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US Meat Production, 1970-2006
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State subtotals = surface balance

9000.00 ~

8000.00 -

7000.00 ~

6000.00 ~

5000.00 ~

4000.00 ~

3000.00 -

2000.00 A

1000.00 -

0.00

O Wet Ndep, kg/lkm2/yr

O N manure, kg/lkm2/yr

B Synthethic Nfert, kg/km2/yr
@ Human Waste, kg/km2/yr




US Nitrogen Budget

Tg N yrl

N,
Atm advection, 4.6
Lightning, 0.1 ] .
Atm advection, 0.8
Fossil fuel, 5.4
BNF, 6.4
C-BNF, 7.7 Export, 4.3
Fert. prod., 9.4
River, 4.8
Import, 6.0 >
Nr Inputs: 35 Tg N Nr Storage: 5Tg N Nr Denitrified to N,:
Nr Outputs: 14 Tg N —~ 2 Tg soils&vegetation 21 TgN-5TgN =16 Tg N

~ 3 Tg groundwater

Nr “Missing”: 21 Tg N



Nitrification and denitrification processes

(from Mosier and Parkin 2007)
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The nitrogen cascade
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Metrics Case Study:. Chesapeake Bay
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Chemical Nitrogen Cascade: Chesapeake Bay
(Tonnes reactive nitrogen reaching each ecosystem type annually, by source)
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The Nitrogen Cascade in Chesapeake Bay —
Implications for Nr Management

Damage costs and marginal abatement costs per metric ton of Nr by source
(atmospheric, terrestrial, freshwater) indicate that the least costly
abatement and greatest gain comes from atmospheric emission controls.

100% -
90% -
80%
70% -
60% -
50%

40%

30%
20% -
10% -

4 Atmospheric

4 Terrestrial

TRRERROR
——
—
e e

0% : : , 4 Freshwater
A S & Qe
& & & \.@
2
&
w

Relative importance of all reactive nitrogen sources released into atmospheric, terrestrial,
and freshwater media within the Chesapeake Bay Watershed (Birch et al., 2011)
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U.S. Biomass Resources

Biomass Resources Available in the United States
MNormalized by County Area
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U.S. Ethanol Plants

Expansions/New Construction

© Currently in Production
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SPARROW simulated N fluxes Iin stream reaches

TN Flux (metric tons/yr)
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Carbon and Nitrogen Global Cycles
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Carbon and Nitrogen Global Cycles
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Major Environmental Impact Categories: N and C

Impact Reference Unit Carbon Nitrogen
(TRACI)
Climate Change CO; o CcO,, CH, N,O
Eutro/Hypoxia Neq Indirect NO3', NH3, NOX
Ecotoxicity 2,4-Dg, compound NH,
specific
Human Health PM2.5,, NO,
(Criteria) substance
specific
Non-Cancer Toluene,, NH,
Acidification H* H,CO, HNO,, NH,*
Smog Formation NOXeq CH,, CO, VOC NO,




Corn-Soybean Agrosystem for LCI
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25 a) Corn Air Emissions by Stage

B On-Farm
2 . BLime
O Pesticides
O Transportation
OFertilizers
O Corn Farming

-
(8]
L

1 -

L F ;@'.r 1 i

Ox PM10

Landis, et al. ES&T 2007, 41, 1457-1464



U.S. N,O Emissions in 2005

Other Sources
14%

Agricultural and Soil On-Road Vehicles

Management &L
78% Non-Road Mobile
0.8%

Source: Inventory of U.S. Greenhouse
Gas Emissions and Sinks, 1990-2005
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Comparative Results
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Comparative Results
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Concluding thoughts...[1]

Life Cycle Approach

By following the flow of materials (and energy),
life cycle analysis compels us to couple related
subsystems, for example material acquisition to
product development and use, nitrogen cycling
to carbon cycling, demand to impacts, impacts to
control measures to policy

Helps in making holistic comparisons among
options, policies, and designs

Clarifies the nature of tradeoffs, helping to avoid
unintended consequences

llluminates those points where intervention
works best

Helps to identify critical research and data needs




Concluding thoughts...[2]

Is the nitrogen problem a lost cause?
— Total NO, emissions dropping
— NH; emissions rising
— Nr needs vs impacts
— Complex interactions (cascade/coupling w/ C)
— Ongoing research needs
— Relative indifference
— Limited regulatory approach (TMDL)
— Conflicting policies (food vs fuel)
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