

# A reduction in triclosan and triclocarban in water resource recovery facilities' influent, effluent, and biosolids following the U.S. Food and Drug Administration's 2013 proposed rulemaking on antibacterial products

Dominic A. Brose,<sup>1\*</sup> <sup>(D)</sup> Kuldip Kumar,<sup>1</sup> Anna Liao,<sup>1</sup> Lakhwinder S. Hundal,<sup>2</sup> Guanglong Tian,<sup>1</sup> Albert Cox,<sup>1</sup> Heng Zhang,<sup>1</sup> Edward W. Podczerwinski<sup>1</sup>

<sup>1</sup>Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Chicago, Illinois <sup>2</sup>InNow LLC, Wadsworth, Ohio

Received 20 November 2018; Revised 25 February 2019; Accepted 28 February 2019

Additional Supporting Information may be found in the online version of this article.

Correspondence to: Dominic A. Brose, Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, Chicago, IL. Email: brosed@mwrd.org

\*WEF Members

Published online 12 April 2019 in Wiley Online Library (wileyonlinelibrary.com)

DOI: 10.1002/wer.1101

© 2019 Water Environment Federation

#### • Abstract

Pharmaceutical and personal care product compounds (PPCPs) comprise a large and diverse group of chemical compounds, including prescription and over-the-counter drugs and cleaning agents. Although PPCPs in the effluent and biosolids of water resource recovery facilities (WRRFs) are currently not regulated, public interest has led the Metropolitan Water Reclamation District of Greater Chicago to monitor for 11 PPCPs in the influent, effluent, and biosolids at its seven WRRFs. In 2016, the U.S. Food and Drug Administration (FDA) issued a final rule establishing that 19 specific ingredients, including triclosan and triclocarban, were no longer generally recognized as safe and effective, which prohibits companies from marketing soaps as antibacterial if they contain one or more of these ingredients. It was presumed that since the proposed rulemaking in 2013, manufacturers began to remove these active ingredients from their products. Annual monitoring of 11 PPCPs from 2012 to 2017 demonstrated a 71% decrease in triclosan and 72% decrease in triclocarban in per capita influent loading into seven WRRFs. There was a 70% decrease in triclosan and 80% decrease in triclocarban concentrations in biosolids. These declines suggest the FDA rule for the reduction in use of these compounds was effective and resulted in manufacturers removing these ingredients from their products. © 2019 Water Environment Federation

### • Practitioner points

- Reduction in triclosan and triclocarban per capita influent loading observed from 2012 to 2017.
- Reduction in triclosan and triclocarban biosolids loading observed from 2012 to 2017.
- 2016 FDA rulemaking on antimicrobial soaps was effective in removing triclosan and triclocarban from these products.
- Positive impact on quality of biosolids land applied to farmland.

### · Key words

biosolids; effluent; influent; personal care products; pharmaceuticals; triclocarban; triclosan

## INTRODUCTION

PHARMACEUTICAL and personal care product compounds (PPCPs) generally refer to compounds found in any product used by individuals for health or cosmetic reasons or agribusiness to enhance the growth or health of livestock. These compounds comprise a large and diverse group of chemical substances, including prescription and over-the-counter drugs, veterinary drugs, fragrances, cosmetics, and cleaning agents. Pharmaceutical and personal care product compounds are continuously released into wastewater streams from domestic use and ultimately reach water resource recovery facilities (WRRFs) where they biodegrade, chemically degrade, partition to sludge solids, or remain soluble in the effluent (Luo et al., 2014; Onesios, Jim, & Bouwer, 2009; Zuehlke, Duennbier, Lesjean, Gnirss, & Buisson, 2006). There has been increasing attention given to the fate and transport of these compounds, including triclosan and triclocarban, in the environment from biosolids application to land (Boxall et al., 2012; Kinney et al., 2006; Prosser, Lissemore, Topp, & Sibley, 2014). Although PPCPs are not currently regulated in WRRFs' effluent or biosolids, continued public attention to trace concentrations of PPCPs in the environment led the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) to monitor for 11 select PPCPs in the influent, effluent, and biosolids at their seven WRRFs.

In 2016, the U.S. Food and Drug Administration (FDA) issued the final rule Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Overthe-Counter Human Use, 21 § CFR 310, which established that 19 specific ingredients, including triclosan and triclocarban, were no longer considered generally recognized as safe and effective (GRAS/GRAE) and were misbranded. This change in recognition by the FDA prohibits companies from marketing soaps or washes as antibacterial if they contain one or more of these 19 ingredients (Supporting information Table S1). It was presumed that manufacturers began to phase out the use of these active ingredients in their products since the FDA's proposed rulemaking in 2013. Monitoring data from 2012 to 2017 were analyzed to assess whether there was a change in triclosan and triclocarban concentrations in the MWRDGC's influent and biosolids from their seven WRRFs in response to a proposed change in the FDA's policy prohibiting companies from marketing soaps or washes as antibacterial. Policy changes such as this that affect the formulation of consumer products could have a significant and detectable effect of reducing the concentrations of trace organic compounds entering WRRFs.

## Methods

Influent, effluent, and biosolids (digester draw or wasteactivated sludge) samples were collected annually from the MWRDGC's seven WRRFs from 2012 to 2017. Influent and effluent loading values for 11 PPCPs were calculated using concentrations and daily flow on the day of sampling and then normalized on a per capita basis using 2010 census data for each facility's service area (Table 1). Normalizing data on a per capita basis allowed for the comparison of values across different size facilities. The James C. Kirie (Kirie), Lemont, and Terrence J. O'Brien (O'Brien) facilities send waste-activated sludge to the Stickney or the John E. Egan (Egan) facility for digestion. Only four of the seven water resource recovery facilities produce final biosolids: Calumet, Egan, Hanover Park, and Stickney. Nearly all of the MWRDGC's biosolids are ultimately beneficially reused through land application. The 11 PPCPs in the monitoring program were chosen because they are commonly used compounds, cover a range of different categories (e.g., anticonvulsant, antibiotic, antidepressant), and were evaluated in the U.S. Environmental Protection Agency (USEPA), 2009 Targeted National Sewage Sludge Survey (TNSSS) (Supporting information Table S2; USEPA, 2009).

A 24-hr composite sample, comprised of six sub-samples taken every 4 hr, was taken manually each year from each plant in either January or February. Generally, no more than two plants were sampled on the same day. Samples were collected at each facility's influent, effluent, and solids sampling point directly into one-gallon amber glass vials until full (no head space) and placed on ice in coolers for transport to the MWRDGC's Organic Compounds Analytical Laboratory. Empty vials were carried from the laboratory to the sampling site and returned unopened to the laboratory to monitor for contamination attributable to field handling and transportation procedures. Sample extractions were performed on whole samples without filtration prior to using the Oasis Disk (47 mm HLB) on an Automated Solid Phase Extractor (Horizon SPE-DEX 4790) using modified U.S. Environmental Protection Agency Method 1694 (USEPA, 2007). Analyses of compounds were performed with high-performance liquid chromatography with a triple quad mass spectrometer (Agilent 1200 HPLC and 6410B Triple Quad MS).

To ensure quality control of MWRDGC's PPCP analyses, precleaned and precertified bottles were purchased for sample use. Method blanks were prepared with the same analysis procedure as samples to ensure no contamination or interference. The method detection limit procedure in the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 21 § CFR 136 (2017) was followed to extract and analyze seven replicates of low-level spikes and detection limits calculated following the recommended procedure. Final laboratory detection limits were adjusted by sample volume used for extraction or by dilution factor if the extract needed to be diluted. Laboratory control samples (i.e., known concentrations of target compounds spiked into reagent water), matrix spikes (i.e., known concentrations of target compounds spiked into a sample), and matrix spike duplicates (i.e., known concentrations of target compounds spiked into the same sample as matrix spikes) were also analyzed. Compound recoveries were monitored to ensure they met method requirements. Relative percent differences between matrix spikes and matrix spike duplicates were calculated. Surrogates (i.e., known concentrations of two surrogates spiked into all samples in order to calculate recoveries) were also calculated and monitored. A six- or seven-point calibration curve was conducted on the HPLC triple quad MS and relative standard deviations calculated by instrument software for all compounds to ensure proper calibration prior to analysis.

Percent solids for digester draw and waste-activated sludge samples were determined by weight after oven-drying the samples at 105°C for 24 hr. Percent solids ranged from 0.5% to 3.0%. Biosolids concentrations are reported on an oven-dried weight basis. Biological oxygen demand (BOD), suspended solids (SS), ammonia, and total phosphorus influent data for

|               | AVERAGE<br>FLOW <sup>A</sup> | TOTAL<br>CAPACITY             | _ POPULATION           | TREATMENT                                                       | BIOSOLIDS       |
|---------------|------------------------------|-------------------------------|------------------------|-----------------------------------------------------------------|-----------------|
| FACILITY NAME | M <sup>3</sup> /DAY (MGD)    |                               | SERVICED <sup>B</sup>  | ТҮРЕ                                                            | SAMPLE          |
| Stickney      | $2.6 \times 10^6 (677)$      | 5.5 × 10 <sup>6</sup> (1,440) | 2,160,235              | Single stage<br>nitrification;<br>Anaerobic<br>digestion        | Digester draw   |
| O'Brien       | $8.8 \times 10^5 (232)$      | $1.7 \times 10^{6} (450)$     | 1,313,500              | Single stage<br>nitrification; Solids<br>sent to Stickney       | Waste-activated |
| Calumet       | 9.7 × 10 <sup>5</sup> (256)  | $1.6 \times 10^{6} (430)$     | 1,005,870              | Conventional<br>activated sludge;<br>Anaerobic<br>digestion     | Digester draw   |
| Kirie         | $1.6 \times 10^5 (42)$       | $1.6 \times 10^6 (110)$       | 264,667                | Single stage/two<br>stage nitrification;<br>Solids sent to Egan | Waste-activated |
| Egan          | $9.1 \times 10^4$ (24)       | 1.9 × 10 <sup>5</sup> (50)    | 160,735                | Single stage<br>nitrification;<br>Anaerobic<br>digestion        | Digester draw   |
| Hanover Park  | $3.6 \times 10^4 (9.5)$      | 8.3 × 10 <sup>4</sup> (22)    | 56,532                 | Single stage<br>nitrification;<br>Anaerobic<br>digestion        | Digester draw   |
| Lemont        | $9.8 \times 10^3$ (2.6)      | $1.5 \times 10^4$ (4.0)       | 21,113                 | Conventional<br>activated sludge;<br>Solids sent to<br>Stickney | Waste-activated |
| Total         | $4.7 \times 10^{6} (1,243)$  | $9.5 \times 10^{6} (2,506)$   | 4,982,652 <sup>c</sup> |                                                                 |                 |

 Table 1.
 The Metropolitan Water Reclamation District of Greater Chicago's seven water resource recovery facilities, populations serviced, treatment type, and description of biosolids samples

Notes. MGD: million gallons per day.

<sup>a</sup>2017 data.

<sup>b</sup>Based on 2010 Census data.

<sup>c</sup>The population equivalent for entire service area including domestic use and industrial discharge is approximately 10 million people.

corresponding dates and facilities were downloaded from the MWRDGC's Water Reclamation Plant Data published on its website (www.mwrd.org).

The resulting data set was small and not considered representative of the overall contaminant profile for each facility; however, statistical differences in triclosan and triclocarban concentrations that are not found for the other PPCPs would suggest a change in concentration did occur for these compounds. Due to this small sample size and lack of normal distribution in the annual influent, effluent, and biosolids data, significant differences were first determined by the Kruskal-Wallis rank sum test, which ranks the data and tests for differences in the locations of the distributions between groups. When the Kruskal-Wallis rank sum test was found to be significant (p < 0.05), the Dunn post hoc test for multiple comparisons was performed to determine significant differences

between years (p < 0.05). All statistical analyses were conducted in the R software package v.3.4.1.

## **Results and Discussion**

Despite a small data set from annual PPCP monitoring, evident trends in the data were observed for triclosan and triclocarban, but not for the other nine PPCPs analyzed. The mean per capita influent loading for triclosan decreased 71% from 2,811  $\mu$ g day<sup>-1</sup> person<sup>-1</sup> in 2012 to 811  $\mu$ g day<sup>-1</sup> person<sup>-1</sup> in 2012 to 811  $\mu$ g day<sup>-1</sup> person<sup>-1</sup> in 2017 (Figure 1). The mean per capita influent loading for triclocarban decreased 72% from 1,627  $\mu$ g day<sup>-1</sup> person<sup>-1</sup> in 2012 to 455  $\mu$ g day<sup>-1</sup> person<sup>-1</sup> in 2017 (Figure 2). No consistent decreases in mean per capita influent loading from 2012 to 2017 were observed for the other nine PPCPs (Table 2). Additionally, there were no significant differences from 2012



Figure 1. Decrease in mean  $\pm SE$  per capita influent loading (µg day<sup>-1</sup> person<sup>-1</sup>) of triclosan in the Metropolitan Water Reclamation District of Greater Chicago's seven water resource recovery facilities. Different letters between years for the same compound indicate significant differences at p < 0.05 using Kruskal-Wallis rank sum test with post hoc Dunn test for multiple comparisons.



Figure 2. Decrease in mean  $\pm SE$  per capita influent loading  $(\mu g \, day^{-1} \, person^{-1})$  of triclocarban in the Metropolitan Water Reclamation District of Greater Chicago's seven water resource recovery facilities. Different letters between years for the same compound indicate significant differences at p < 0.05 using Kruskal-Wallis rank sum test with post hoc Dunn test for multiple comparisons.

to 2017 for BOD, SS, ammonia, or total phosphorus per capita influent concentrations and the values for these water quality analytes were in the range expected for typical WRRFs (Supporting information Table S3). The consistency of the other nine PPCPs and water quality analytes for the 8-year period helps to validate these observed reductions in triclosan and triclocarban.

Andrade et al. (2015) monitored the influent loading of select chemicals of concern six times annually over a 7 year period from 2005 to 2011 for a single WRRF and demonstrated a 42% decrease in brominated diphenyl ether (BDE)-47 and BDE-49 concentrations and a 47% decrease in triclocarban concentrations. These reductions in influent concentrations were attributed to these chemicals being phased out of manufacturing. The authors did not, however, observe any trends in triclosan over the same period. Krogh, Lyons, and Lowe (2017) found statistically significant decreases in triclosan concentrations from 2014 to 2016 at two WRRFs in Canada and a decrease in triclocarban concentrations of one of those two facilities. The concentrations of 10 other detected PPCPs at these facilities were stable over the same time period.

There were no consistent significant decreases in mean per capita effluent loading for any PPCP (Table 3). The 2012 effluent loading concentrations (non-normalized data) for triclocarban and triclosan for all seven plants ranged from 0.91 to 407 g/ day with a mean of 117 and 0.74–158 g/day with a mean of 55 g/ day, respectively. These values are comparable to reported effluent loading concentrations of 1.6-168 g/day for triclocarban and 0.91-76 g/day for triclosan from four WRRFs in Savannah, GA with flows ranging from  $5.1 \times 10^3$  to  $7.3 \times 10^4$  m<sup>3</sup>/day (1.3– 19 MGD) (Kumar, Priva, Peck, & Sajwan, 2010). Additionally, Heidler, Sapkota, and Halden (2006) reported an effluent loading of 127 g/day for triclocarban from a WRRF in the Mid-Atlantic region with a flow of  $6.8 \times 10^5 \text{ m}^3/\text{day}$  (180 MGD).

Percent removal was calculated for the nine PPCPs other than triclosan and triclocarban, because they did not demonstrate a decrease in influent loading during the 8-year period. There were no additional studies conducted at these facilities to determine whether abiotic degradation, biodegradation, or sorption was the predominant mechanism for removal, so percent removal is considered inclusive of all processes.

| . Mean ± <i>SE</i> per capita influer of Greater Chicago's seven wa |      |      |      |      |      | ation |
|---------------------------------------------------------------------|------|------|------|------|------|-------|
| 2012                                                                | 2013 | 2014 | 2015 | 2016 | 2017 |       |

|                 | 2012                                      | 2013             | 2014             | 2015             | 2016             | 2017           |  |
|-----------------|-------------------------------------------|------------------|------------------|------------------|------------------|----------------|--|
| PPCPS           | MG DAY <sup>-1</sup> PERSON <sup>-1</sup> |                  |                  |                  |                  |                |  |
| Carbamazepine   | 108 ± 9.3a                                | 137 ± 15a        | 187 ± 78a        | 128 ± 11a        | 103 ± 8.9a       | 204 ± 49a      |  |
| Ciprofloxacin   | 2,258 ± 326a                              | 1,921 ± 276ab    | 779 ± 138c       | 1,232 ± 247bc    | 1,372 ± 256abc   | 2,263 ± 524a   |  |
| Codeine         | 52 ± 11a                                  | 107 ± 17a        | 89 ± 15a         | 104 ± 14a        | 111 ± 26a        | 126 ± 19a      |  |
| Diphenhydramine | 281 ± 61b                                 | 433 ± 49b        | 327 ± 51b        | 471 ± 53b        | $410 \pm 56b$    | 756 ± 51a      |  |
| Fluoxetine      | 21 ± 2.2a                                 | $33 \pm 4.7a$    | 22 ± 3.7a        | $24 \pm 4.2a$    | 29 ± 4.2a        | 26 ± 3.0a      |  |
| Gemfibrozil     | 613 ± 94a                                 | 685 ± 94a        | 567 ± 122a       | 633 ± 71a        | 529 ± 55a        | 428 ± 37a      |  |
| Ibuprofen       | 5,369 ± 662a                              | $6,620 \pm 260a$ | $6,128 \pm 554a$ | $6,494 \pm 535a$ | 6,016 ± 482a     | 6,121 ± 521a   |  |
| Naproxen        | 5,161 ± 591a                              | 6,209 ± 499a     | 6,603 ± 759a     | 6,949 ± 659a     | $6,224 \pm 634a$ | 6,113 ± 783a   |  |
| Thiabendazole   | 13 ± 1.9a                                 | $26 \pm 6.0a$    | 18 ± 3.3a        | 15 ± 2.7a        | $18 \pm 2.4a$    | $20 \pm 2.3a$  |  |
| Triclocarban    | $1,627 \pm 320a$                          | 1,286 ± 187a     | $581 \pm 154c$   | 863 ± 318bc      | 592 ± 149c       | $455 \pm 141c$ |  |
| Triclosan       | 2,811 ± 355a                              | 2,335 ± 226ab    | 1,655 ± 337abc   | 1,536 ± 294bcd   | 1,027 ± 211 cd   | 811 ± 187d     |  |

Note. PPCPs: Pharmaceutical and personal care product compounds; Different letters between years for the same compound indicate significant differences at p < 0.05 using Kruskal–Wallis rank sum test with post hoc Dunn test for multiple comparisons.

|                 | 2012                    | 2013                                      | 2014          | 2015           | 2016          | 2017          |  |  |  |
|-----------------|-------------------------|-------------------------------------------|---------------|----------------|---------------|---------------|--|--|--|
| PPCPS           | MG DAY <sup>-1</sup> PH | MG DAY <sup>-1</sup> PERSON <sup>-1</sup> |               |                |               |               |  |  |  |
| Carbamazepine   | 97 ± 7.6a               | 148 ± 16a                                 | $120 \pm 16a$ | 118 ± 14a      | 104 ± 6.8a    | $124 \pm 14a$ |  |  |  |
| Ciprofloxacin   | 900 ± 108a              | $501 \pm 96b$                             | $304 \pm 40b$ | $350 \pm 38b$  | $409 \pm 60b$ | $330 \pm 82b$ |  |  |  |
| Codeine         | 53 ± 10b                | $102 \pm 15a$                             | 95 ± 17ab     | 93 ± 12ab      | $62 \pm 14b$  | 126 ± 19a     |  |  |  |
| Diphenhydramine | 167 ± 12a               | 246 ± 17a                                 | 213 ± 38a     | 201 ± 30a      | 166 ± 32a     | 234 ± 28a     |  |  |  |
| Fluoxetine      | 13 ± 1.3a               | $21 \pm 4.4a$                             | 15 ± 2.1a     | $14 \pm 0.89a$ | 17 ± 2.1a     | 15 ± 1.4a     |  |  |  |
| Gemfibrozil     | 251 ± 70a               | 297 ± 56a                                 | 383 ± 64a     | 321 ± 49a      | 183 ± 42a     | $208 \pm 60a$ |  |  |  |
| Ibuprofen       | 179 ± 87a               | 113 ± 39a                                 | 169 ± 103a    | 75 ± 36a       | 122 ± 95a     | 28 ± 12a      |  |  |  |
| Naproxen        | 178 ± 73a               | 159 ± 71a                                 | 778 ± 459a    | 151 ± 76a      | 153 ± 76a     | $147 \pm 69a$ |  |  |  |
| Thiabendazole   | $12 \pm 2.0a$           | $28 \pm 10a$                              | $14 \pm 2.6a$ | 13 ± 2.2a      | 15 ± 2.1a     | $18 \pm 2.3a$ |  |  |  |
| Triclocarban    | $140 \pm 48a$           | 97 ± 21a                                  | 87 ± 19a      | 67 ± 23a       | 42 ± 13a      | 51 ± 15a      |  |  |  |
| Triclosan       | 73 ± 17a                | 83 ± 24a                                  | 123 ± 61a     | 65 ± 15a       | 66 ± 15a      | 45 ± 12a      |  |  |  |

 Table 3.
 Mean  $\pm SE$  per capita effluent loading of pharmaceutical and personal care product compounds from the Metropolitan Water

 Reclamation District of Greater Chicago's seven water resource recovery facilities before and after the U.S. FDA's 2013 proposed rulemaking

Note. Different letters between years for the same compound indicate significant differences at p < 0.05 using Kruskal–Wallis rank sum test with post hoc Dunn test for multiple comparisons.

**Table 4.** Percent removal and log Kow values for nine pharmaceutical and personal care product compounds from the MetropolitanWater Reclamation District of Greater Chicago's seven waterresource recovery facilities

| COMPOUND                   | PERCENT REMOVAL <sup>a</sup> | LOG KOW |
|----------------------------|------------------------------|---------|
| Gemfibrozil                | 52                           | 4.77    |
| Fluoxetine                 | 39                           | 4.05    |
| Ibuprofen                  | 98                           | 3.97    |
| Naproxen                   | 96                           | 3.18    |
| Diphenhydramine            | 54                           | 3.27    |
| Thiabendazole              | 9.0                          | 2.47    |
| Carbamazepine              | 18                           | 2.45    |
| Codeine                    | 10                           | 1.19    |
| Ciprofloxacin <sup>b</sup> | 77                           | 0.28    |

<sup>a</sup>Percent removal determined as difference between mean influent and mean effluent loading for the 8-year period.

<sup>b</sup>2013–2017 data only.

Percent removal was determined as the percent decrease between the mean influent and effluent concentrations for the 8-year period and ranged from 9% to 98% for the nine PPCPs (Table 4).

One of the key mechanisms for removal of PPCPs from WRRFs is by sorption to biosolids (Onesios et al., 2009). The sorption of PPCPs to biosolids is dependent on lipophilicity, expressed as log Kow. Generally, a log Kow <2.5 results in low sorption potential, log Kow >2.5 and <4.0 yields medium sorption potential, and log Kow >4.0 promotes high sorption potential (Jones-Lepp & Stevens, 2007). The PPCPs with the greatest removal, ibuprofen and naproxen, had log Kow values <4.0, and the PPCPs with log Kow values >4.0, gemfibrozil and fluoxetine, had removals of only 52% and 39%, respectively (Table 4). Ciprofloxacin also had a notably high removal rate of 77% (2013–2017), but has a low log Kow value of 0.28. These results suggest a likely mix of sorption and degradation processes contributing to the removal of PPCPs from these facilities. Overall,



**Figure 3.** Decrease in mean  $\pm$  *SE* concentration of triclosan in biosolids from the Metropolitan Water Reclamation District of Greater Chicago's seven water resource recovery facilities. Different letters between years for the same compound indicate significant differences at *p* < 0.05 using Kruskal-Wallis rank sum test with post hoc Dunn test for multiple comparisons.



**Figure 4.** Decrease in mean  $\pm$  *SE* concentration of triclocarban in biosolids from the Metropolitan Water Reclamation District of Greater Chicago's seven water resource recovery facilities. Different letters between years for the same compound indicate significant differences at *p* < 0.05 using Kruskal-Wallis rank sum test with post hoc Dunn test for multiple comparisons.

the removal of these PPCPs during this 8-year period was in the range of previously reported values (Kumar et al., 2010; Rosal et al., 2010; Xia, Bhandari, Das, & Pillar, 2006).

|                 | 2012                                  | 2013                | 2014             | 2015                | 2016                 | 2017               |
|-----------------|---------------------------------------|---------------------|------------------|---------------------|----------------------|--------------------|
| PPCPS           | MG KG <sup>-1</sup> DAY <sup>-1</sup> |                     |                  |                     |                      |                    |
| Carbamazepine   | 62 ± 14a                              | 81 ± 14a            | 89 ± 21a         | 79 ± 21a            | 64 ± 21a             | 48 ± 8.0a          |
| Ciprofloxacin   | $20,834 \pm 3,844a$                   | $17,834 \pm 4,314a$ | 10,851 ± 2,752a  | $14,470 \pm 3,154a$ | 12,035 ± 1,753a      | 14,918 ± 4,002a    |
| Codeine         | 16 ± 5.5a                             | 53 ± 18a            | 33 ± 18a         | 56 ± 20a            | 46 ± 16a             | 73 ± 19a           |
| Diphenhydramine | 564 ± 104a                            | 882 ± 140a          | 611 ± 132a       | 676 ± 123a          | 643 ± 93a            | 674 ± 91a          |
| Fluoxetine      | 131 ± 28a                             | $180 \pm 47a$       | 160 ± 37a        | 158 ± 39a           | 129 ± 19a            | 88 ± 20a           |
| Gemfibrozil     | 161 ± 50ab                            | $284 \pm 64a$       | 182 ± 58ab       | 238 ± 48a           | 154 ± 28ab           | 73 ± 8.9b          |
| Ibuprofen       | 766 ± 231a                            | 1,418 ± 373a        | 1,001 ± 281a     | 1,128 ± 360a        | 960 ± 250a           | 431 ± 69a          |
| Naproxen        | 104 ± 54a                             | 173 ± 70a           | 223 ± 89a        | $267 \pm 107a$      | 116 ± 51a            | 169 ± 81a          |
| Thiabendazole   | 41 ± 20a                              | 125 ± 77a           | 36 ± 9.7a        | 39 ± 8.5a           | 75 ± 52a             | 29 ± 3.3a          |
| Triclocarban    | 13,362 ± 3,011ab                      | 15,557 ± 3,072a     | 11,859 ± 3,049ab | 10,335 ± 2,112ab    | 6,985 ± 1,208b       | $2,730\pm584c$     |
| Triclosan       | 8,119 ± 3,831abc                      | $8,552 \pm 3,038a$  | 8,516 ± 3,619ab  | 6,643 ± 2,211abc    | $3,034 \pm 1,170 bc$ | $2,\!408 \pm 429c$ |

**Table 5.** Mean ± *SE* concentrations of pharmaceutical and personal product compounds in the biosolids generated at the Metropolitan Water Reclamation District of Greater Chicago's seven water resource recovery facilities before and after the U.S. FDA's 2013 proposed rulemaking

Note. PPCPs: Pharmaceutical and personal care product compounds; Different letters between years for the same compound indicate significant differences at p < 0.05 using Kruskal–Wallis rank sum test with post hoc Dunn test for multiple comparisons.

There were observed trends in PPCP concentrations in biosolids that were also unique to triclosan and triclocarban. From 2012 to 2017, the mean triclosan concentration in MWRDGC's biosolids decreased by 70% from 8,119 to 2,408 µg/kg (Figure 3) and the mean triclocarban concentration decreased by 80% from 13,363 to 2,730 µg/kg (Figure 4). There were no consistent trends in the mean concentrations in biosolids for the other nine PPCPs over the same time period (Table 5). The EPA's 2009 TNSSS reported mean triclosan and triclocarban concentrations in biosolids at 16,097 and 39,433 µg/kg, respectively (USEPA, 2009; Supporting information Table S2). The mean concentrations of 2,408 µg/kg for triclosan and 2,703 µg/kg for triclocarban in MWRDGC's biosolids in 2017 were 85% and 93% lower, respectively, than concentrations reported in the 2009 TNSSS. This suggests that a new national survey of biosolids may find significantly reduced concentrations of these two PPCPs.

The nearly year-to-year decrease in triclocarban and triclosan loading in influent from 2012 to 2017 in the MWRDGC's seven facilities, in combination with a lack in year-to-year changes in the loading for nine other PPCPs and water quality parameters, suggests that triclosan and triclocarban loading to WRRFs decreased in response to the FDA's proposed rulemaking in 2013. The reduction in triclosan and triclocarban loading in the influent resulted in a corresponding reduction in these compounds in the biosolids generated at these WRRFs. Reductions in the concentrations of trace organic compounds help to improve the quality of biosolids, which is an ongoing goal for WRRFs recovering resources through the land application of biosolids.

### ACKNOWLEDGMENT

The authors wish to thank Mina Patel, Dan Dreger, Maricela Sabido, and Andrew Scott in the Environmental Monitoring and Research Division and Bharat Gandhi in the Analytical Lab Division at the MWRDGC for their contributions to the pharmaceutical and personal care product research projects. The authors also wish to thank Dr. Linda Lee at Purdue University for her initial comments on the manuscript.

## References

- Andrade, N. A., Lozanoa, N., McConnell, L. L., Torrents, A., Rice, C. P., & Ramirez, M. (2015). Long-term trends of PBDEs, triclosan, and triclocarban in biosolids from a wastewater treatment plant in the Mid-Atlantic Region of the US. *Journal of Hazardous Materials*, 282,68–74.
- Boxall, A. B., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., & Van Der Kraak, G. (2012). Pharmaceuticals and personal care products in the environment: What are the big questions? *Environmental Health Perspectives*, 120(9), 1221– 1229. https://doi.org/10.1289/ehp.1104477
- Heidler, J., Sapkota, A., & Halden, R. U. (2006). Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environmental Science & Technology, 40(11), 3634–3639. https://doi. org/10.1021/es052245n
- Jones-Lepp, T. L., & Stevens, R. (2007). Pharmaceuticals and personal care products in biosolids/sewage sludge: The interface between analytical chemistry and regulation. *Analytical and Bioanalytical Chemistry*, 387(4), 1173–1183. https://doi.org/10.1007/ s00216-006-0942-z
- Kinney, C. A., Furlong, E. T., Zaugg, S. D., Burkhardt, M. R., Werner, S. L., Cahill, J. D., & Jorgensen, G. R. (2006). Survey of organic wastewater contaminants in biosolids destined for land application. *Environmental Science and Technology*, 40(23), 7207– 7215. https://doi.org/10.1021/es0603406
- Krogh, J., Lyons, S., & Lowe, C. J. (2017). Pharmaceuticals and personal care products in municipal wastewater and the marine receiving environment near Victoria Canada. Frontiers in Marine Science, 4, 415. https://doi.org/10.3389/ fmars.2017.00415
- Kumar, K. S., Priya, S. M., Peck, A. M., & Sajwan, K. S. (2010). Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and Landfill in Savannah, Georgia, USA. Archives of Environmental Contamination and Toxicology, 58(2), 275-285. https://doi.org/10.1007/s00244-009-9383-y
- Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., ... Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. *Science of the Total Environment*, 473, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
- Onesios, K. M., Jim, T. Y., & Bouwer, E. J. (2009). Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. *Biodegradation*, 20(4), 441–466. https://doi.org/10.1007/s10532-008-9237-8
- Prosser, R. S., Lissemore, L., Topp, E., & Sibley, P. K. (2014). Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids. *Environmental Toxicology and Chemistry*, 33(5), 975–984. https://doi. org/10.1002/etc.2505
- Rosal, R., Rodriguez, A., Perdigon-Melon, J. A., Petre, A., Garcia-Calvo, E., Gomez, M. J., ... Fernandez-Alba, A. R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. *Water Research*, 44, 578-588. https://doi.org/10.1016/j. watres.2009.07.004

- U.S. Environmental Protection Agency (USEPA) (2007). Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/ MS. EPA-821-R-08-008. Washington, DC: USEPA, Office of Water.
- U.S. Environmental Protection Agency (USEPA) (2009). Targeted national sewage sludge survey. EPA-822-R-08-018. Washington, DC: USEPA, Office of Water.
- Xia, K., Bhandari, A., Das, K., & Pillar, G. (2006). Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. *Journal of Environment Quality*, 34(1), 91–104.
- Zuehlke, S., Duennbier, U., Lesjean, B., Gnirss, R., & Buisson, H. (2006). Long-term comparison of trace organics removal performances between conventional and membrane activated sludge processes. *Water Environment Research*, 78(13), 2480–2486. https://doi.org/10.2175/106143006X111826