Multifunctional Perennial Filter Strips
An effective way to reduce nutrient loss

Nutrient loss reduction at the edge-of-field
The Gulf of Mexico Task Force has obligated the development of action plans by the 12 contributing states in the Mississippi River Basin to reduce the loss of nutrients (nitrogen and phosphorous) to the Gulf by 45%. With this, Illinois published the “Illinois Nutrient Loss Reduction Strategy” in 2015 (State of Illinois, 2015). This strategy identified priority watersheds for nutrient loss reduction efforts and outlined the alternative scenarios necessary to achieve the target reduction from both point and nonpoint (agricultural) sources. The agricultural practices include nutrient management, cover crops, reduced tillage, and edge-of-field practices. Perennial based filter strips installed at the edge of fields (see figure) are highly effective at reducing nutrient losses. Also, a perennial grass-based (bioenergy and/or forage crops) filter strip can be designed for multifunctionality to offer opportunities to bridge crop production (alternative revenue generation) and ecosystem services (reducing greenhouse gas emission and improving soil carbon sequestration and biodiversity) in agricultural watersheds.

Perennial Buffers
Bioenergy crops
- Switchgrass
- Big bluestem
- Indiangrass
- Prairie cordgrass

Forage crops
- Alfalfa
- Smooth bromegrass
- Tall forage fescue
- Orchardgrass
- Perennial ryegrass
- Timothy
- Meadow fescue

Perennial Buffers
Row Crops (corn/soybean)
40-60 feet

Leaching
Runoff
Uptake

A 3-year study of a filter strip established with perennial warm-season grasses and cool-season forage mixtures at MWRD’s Fulton County Site (IL).
Establishment is the key

Establishment is critical for perennial cropping systems. Successful establishment optimizes biomass yield, promotes productive long-term stands, reduces weed pressure, and contributes to effective nutrient capture from runoff water.

Species and Cultivar Selection

- Perennial grass filter strips compliment crop production by providing multiple services in agricultural watersheds.
- A filter strip can be designed to carry out many functions with various monocultures and mixtures of perennial grasses and forbs can be used.
- Selecting the right species and cultivars is the first step for effective filter strip establishment. Contact local NRCS, extension, or other experts to select the best species and cultivars to meet your management objectives.
- Warm-season grasses in monocultures or mixtures typically produce more biomass and provide more options for wildlife and pollinator habitat.
- Cool-season mixtures provide high-quality forage and are often less expensive and easier to establish than warm-season grasses.

Vegetation 1: Native warm-season grasses

<table>
<thead>
<tr>
<th>Species</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgrass</td>
<td>Bioenergy feedstock</td>
</tr>
<tr>
<td>Big bluestem</td>
<td>Summer forage</td>
</tr>
<tr>
<td>Indiangrass</td>
<td>Wildlife habitat</td>
</tr>
<tr>
<td>Prairie cordgrass*</td>
<td>Bioenergy feedstock</td>
</tr>
<tr>
<td>Mixtures</td>
<td>Bioenergy feedstock Summer forage Wildlife habitat**</td>
</tr>
</tbody>
</table>

Vegetation 2: Cool-season grasses and legumes mixture

<table>
<thead>
<tr>
<th>Species</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth bromegrass</td>
<td>Spring and fall forage</td>
</tr>
<tr>
<td>Meadow fescue, Orchardgrass Tall fescue, Ryegrass, Alfalfa</td>
<td></td>
</tr>
</tbody>
</table>

Vegetation 3: Warm- and cool-season grasses mixtures

<table>
<thead>
<tr>
<th>Species</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixtures</td>
<td>Spring forage</td>
</tr>
<tr>
<td></td>
<td>Fall bioenergy feedstock</td>
</tr>
</tbody>
</table>

*Ideal for bottomland and poorly drained sites
**Wildlife and pollinator benefits can be enhanced by including native forbs

Design and Implementation

Technical Notes

Row Crops Perennial Strips

- Flow
- 40-60 width based on the slope
- 5% (max.)
- ≤ 5% (effective)
- < 10% (max.)
- Lateral slope ≤ 2%
- Maintenance
 - Rills/small channels need to be repaired to avoid concentrated flow through the strip.
 - Control grazing to prevent access by livestock.
 - Control weeds to maintain quality stands.
 - Repair gullies, remove deposited sediment, and reseed after storm events, if necessary.

Photo courtesy of USDA-NRCS
Establishment Guidelines

1. Develop a firm seedbed
2. Plant high quality seed
3. Use a well calibrated drill
4. Plant seed ¾–½ inch deep
5. Plant 2–3 weeks before or after corn
6. Control weeds early
7. Monitor weather conditions to plant before predicted rain

Land Preparation

CONCEPTS: Prepare a firm seedbed to provide good soil-to-seed contact to maximize seed germination and minimize soil erosion and stand failure (no-till is ideal).

KEYS: Avoid tillage in sensitive areas (e.g. high erosion risks, see picture). In areas with heavy residues (e.g. after corn or sorghum harvest), graze or shred the residue, incorporate the residue with tillage, then pack soil surface using a cultipacker or roller (Note: seedbed preparation is similar to Alfalfa).

Planting

SEED QUALITY

- Grass-seed quality affects seedling vigor and establishment speed. Quality test is based on percent Pure Live Seed (PLS):

\[PLS(\%) = \frac{\text{seed purity}(\%) \times \text{viable seed}(\%)}{100} \]

where

Viable seed(%) = dormant seed(%) + germination(%)

SEEDING RATE (30 PLS FT⁻²)

- Approximately 3–10 lbs ac⁻¹ based on seed weight and quality. This will vary by seed lot.

SEEDING

- Drills (shallow seeding depth of ¾–½") : Small seed box drills, native grass-seed drills (see picture), no-till drills, conventional drills
- Broadcast: needs to followed by cultipacker (Not typically needed in no-till fields, killed pasture sod, or surfaces with heavy residues).

TIMING

- 2–3 weeks before or after the recommended corn planting date in your area (late April to early June)
- Germination is maximized at soil temperature of 68–86 °F
- Germination usually begins 3–5 days after planting in optimum soil conditions but complete emergence can take more than a month.

Stand Density

Evaluate stand establishment with a frequency grid (see picture) 4 to 6 weeks after planting to decide if overseeding or replanting is necessary.

CRITERIA FOR RATING STANDS

- Successful: ≥ 50% (> 2 plants ft⁻²)
- Marginal/Adequate: 25–50%
- Poor: < 25% (needs to be overseeded or replanted)

Managing Established Stands

- Control weed species in a timely manner.
- First aboveground biomass harvest should not be done until the completion of ground cover.
- For cool-season grasses or mixtures, biomass can be harvested more than once depending on stand health. Healthy stands can be harvested two times per year in spring and fall to optimize forage yield and quality.
- For warm-season grasses or mixtures, one annual harvest after a killing frost is recommended for bioenergy feedstock production to ensure stand longevity.

Warm-season grasses can be harvested for summer forage at peak standing crop, usually early August. Annual harvests during summer can reduce stand health if fertility is not maintained.

- If the filter strip is enrolled in CRP, follow the CRP harvest management requirements
How does a perennial-based filter perform at Fulton County?

Nitrate-N leaching from row crop fields was measured with high concentrations of soil leachate nitrate-N near the field side of the filter strips. The uptake of leached-N by perennial crops (filter strip) resulted in lower nitrate-N concentrations in soil water at the creek site of the filter strips, showing that the perennial-based filters significantly reduced nutrient leaching compared with the row crop systems (i.e. corn in this study), especially for nitrate-N (see graph).

Soil nitrate concentrations from the field- and creek-side

What affects how much nutrient a filter strip can remove?

Nutrient removal by perennial crops is based on nutrient concentrations in plant tissues and aboveground biomass yields, which were substantially influenced by the harvest frequency (one or two annual harvests) and timing (at anthesis in spring and fall for cool season grasses and after a killing frost for warm-season grasses). For forage crops (cool-season mixture), the two-cut system produced higher biomass yields than the one-cut system during the three years (see graph). The yields potential of cool-season forage decreased over the years, most likely due to insufficient nutrient in the filter strips. However, warm-season bioenergy crops showed higher yield potential in ‘marginal’ (low fertility) areas. The increased biomass from both the two-cut systems and bioenergy crop also increased nutrient (N, P, K) removal (see graph).

Why Perennial Cropping Systems for Filter Strips?

Perennial-based cropping systems can be used for feedstock bioenergy and/or forage, which can be considered as alternative income sources on marginal lands. The research demonstrated that a three-year rotation of forage crops with conventional row crop rotation improved net income compared with the traditional soybean-corn rotation system. The deep rooting system of perennial crops and extended growing seasons increase nutrient removal, greatly contributing to nutrient loss reduction. This on-farm field trial demonstrates that the potential of multifunctional filter strips for reducing nutrient loss from field to surface waters.

This specific filter strip research was jointly conducted by the University of Illinois and Metropolitan Water Reclamation District of Greater Chicago (MWRD)

For more information, contact Dr. D.K. Lee, University of Illinois, Urbana-Champaign (leedk@illinois.edu) or Dr. Guanglong Tian at MWRD (TianG@MWRD.Org)

Copyright © 2020, Board of Trustees, University of Illinois
Issued in furtherance of Cooperative Extension Work Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Sharon M. Nickols-Richardson, Director, University of Illinois Extension, University of Illinois at Urbana-Champaign. University of Illinois Extension provides equal opportunities in programs and employment.