Health Risks of Recreation on the Chicago Area Waterways System: Results of CHEERS

MWRDGC Research Seminar October 29, 2010 Samuel Dorevitch, MD, MPH

Overview

- Why the study was done
- How the study was done
- Findings: Water quality
- Findings: Health risks of CAWS recreation
- Findings: Clinical microbiology
- Next steps

To characterize, under current conditions, the health risks of CAWS limited contact recreation

To characterize, under current conditions, the health risks of CAWS limited contact recreation

To characterize, under current conditions, the health risks of CAWS limited contact recreation

GI, respiratory, eye, ear, skin

Secondary treatment, no disinfection; storm water, CSOs

To characterize, under current conditions,thehealth risksof CAWSlimited contact recreation

GI, respiratory, eye, ear, skin

GI, respiratory, eye, ear, skin

Why characterize the health risks?

- Clean Water Act goal: Recreation in and on the water ("swimmable and fishable" where attainable)
- Use Attainability Analysis
- Proposed effluent standards

Is an epidemiologic study the only approach?

- Existing literature focuses on studies of swimming at beaches
- Microbial risk assessment has been done
- US EPA has established ambient water quality criteria using epidemiologic data

Specific study objectives

- 1. To estimate health risks attributable to CAWS recreation
- 2. To evaluate the relationship between microbial measures of water quality and health risk
- 3. To identify pathogens responsible for illness

Study design

- "Prospective cohort"
 - Enroll people free of disease
 - People have varying exposure
 - Evaluate development of disease in relation to exposure

What is CHEERS?

Chicago Health, **E**nvironmental Exposure, and **R**ecreation **S**tudy

Enroll groups with and without the factor of interest, in this case, exposure to CAWS water

Sources of risk, by group

Data collection

Water sampling

- Indicators by culture (q 2 hours)
 - E. coli
 - Enterococci
 - Somatic coliphages
 - -F+ coliphages
- Pathogens (q 6 hrs)
 - Giardia
 - Cryptosporidium

Evaluate by phone on days 2, 5 and 21

- Acute GI illness
- Acute respiratory illness

- Eye infection
- Ear infection
- Culture of clinical specimens

Data analysis

- Multivariate logistic regression: odds of illness occurring
- Takes into account potentially important differences between groups
- Calculation of attributable risk differences

Data analysis approach: For each health endpoint...

- 1. Develop conceptual model
- 2. Define time windows of interest
- 3. Bivariate analysis
- 4. Multivariate logistic regression
- 5. Attributable risk calculation
- 6. Evaluate model assumptions and alternative approaches

Peer Review

- Water Environment Resarch Foundation (WERF)
- National and international authorities
- EPA, CDC, utility, academia, consulting
- Protocol review
- Data quality review
- Data analysis methods
- Report

Results: Microbes

Study participants

Year	CAWS		GUW		UNX		Total
	n	(%)	n	(%)	n	(%)	n
2007	342	(8.6)	127	(3.4)	323	(9.0)	792
2008	2,426	(61.2)	2,110	(56.4)	2,080	(58.0)	6,616
2009	1,198	(30.2)	1,507	(40.2)	1,184	(33.0)	3,889
Total	3,966	(100.0)	3,744	(100.0)	3,587	(100.0)	11,297

Water recreation activities

Activity	CAWS	GUW
Motor boating	16.7%	6.2%
Canoeing	22.3%	32.1%
Fishing	10.7%	23.0%
Kayaking	34.2%	32.0%
Rowing	16.1%	6.7%
Total	100.0%	100.0%

Self-reported head/face immersion, by water recreation activity and study group

Proportion Remaining AGI-free

Cases of gastrointestinal Illness attributable to water recreation, per 1,000 uses

CAWS	45.4
UNX	32.9
Difference	12.5

Cases of gastrointestinal Illness attributable to water recreation, per 1,000 uses

GUW	46.3
UNX	32.9
Difference	13.4

Cases of gastrointestinal Illness attributable to water recreation, per 1,000 uses*

CAWS	43.6
GUW	-43.0
Difference	0.6

*Takes into account differences in recreational activities and water exposure

CAWS – Unexposed Differences

GUW – Unexposed Differences

CAW – GUW Differences

Severity – Any AGI

Illness Severity: AGI only

Illness severity: eye symptoms, all

Illness severity: eye symptoms only

Study Objective #3:Pathogens

11,297 participants

Breakdown of pathogens: all participants

Pathogen positive stool samples, by study group

<u>Group</u>	<u>% positive</u>	
CAWS	8.6	
GUW	10.5	
<u>UNX</u>	<u>11.3</u>	
Total	10.2	

What we didn't find

- Salmonella
- Shigella
- *E. coli* O157:H7
- Cryptosporidium

Ongoing analysis: Study objective #2

Ongoing analysis (example)

	Microbe
Excess Cases per	concentration
1,000	per 100mL
5	1
10	10
15	100
20	1,000

Many thanks

- UIC Survey Research Lab
- Peter Scheff
- Preethi Pratap
- Margit Javor
- Buck Hanson
- Meredith Wroblewski
- Chiping Nieh
- Ross Gladding
- Suraj Panthi
- Leslie Prince
- Stephanie Deflorio

- An Li
- Rachael Jones
- Angela Michalek
- Ember Vannoy
- Jennifer McGowan
- Sal Cali
- Jackee Wuellner
- Li Liu
- Dan Hryhorczuk
- Ron Hershow
- Mark Dworkin
- Hong Li
- Mary Doi

This research was funded by the Metropolitan Water Reclamation District of Greater Chicago

> Many thanks to: Toni Glymph Dr. Tom Granato Dr. Catherine O'Connor Dr. Geeta Rijal

Questions?

