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|. EFFECTS OF WASTEWATER
CONTAMINANTS ON OXYGEN
TRANSFER



r—
Terminology

OTE: Oxygen Transfer Efficiency (%)

OTR: Oxygen Transfer Rate (kgy,/h)

SOTE: Standardized OTE in clean water (%)
aSOTE: Standardized OTE in process water (%)
o= aSOTE/SOTE (water guality estimate)

F = Fouling factor = aSOTEg, / aSOTE, .,

DWP = Dynamic wet prbssure (diff. headloss, Pa)
¥ = Pressure factor = DWP_,, / DWP,.,,



ol: THEEMOTHER OF ALL “FUDGE" FACTORS

( L a) process water

(kL a)clean water

SOTE = Standardized Oxygen Transfer Efficiency
(O, transferred / O, fed)

Cost efficiency trtmt requirement

J Wb W
AFR = f (a, SOTE, R,)

T r 1 1

$$$ WW aerator ww



WHAI ARE THESE CONTAMINANTS?

- = .

B CONTAINS:
15-25% anionic
surfactants

0-15% non-ionic
surfactants

0-15% soap

0-15% cationic
surfactants




SURFACTANT INTERFACIAL ACCUMULATION




LOW INTERFACIAL VELOCITY =
HIGH SURFACTANT ACCUMULATION =
HIGH GAS TRANSFER DEPRESSION

HIGH INTERFACIAL VELOCITY =
LOW SURFACTANT ACCUMULATION =
LOW GAS TRANSFER DEPRESSION
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Il. MEASUREMENT OF OXYGEN
TRANSFER IN CLEAN WATER



Lab-scale aeration tank

Dimensions: 3 x 3 x5 ft
Submergence: 4 ft
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lll. FIELD MEASUREMENTS OF OXYGEN
TRANSFER IN WASTEWATER



AERATION EFFICIENCY TESTING
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TRADITIONAL OFF-GAS TESTING.SETUP

Guy with a
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GAS SETUP

CURRENT OFF-




Schematic of automated analyzer

OFF-GAS

Key: 1) off-gas hose (from collection hood); 2) reference air intake; 3) three-
way valve; 4) time delay relay; 5) column for CO, and H,O removal; 6) flow
meter; 7) oxygen fuel cell; 8) resistance; 9) differential manometer; 10)
vacuum pump; 11) time delay relay; 12) air velocity meter. Solid lines =
hydraulic line, dashed lines = electrical connection




REAL- TII\/IE OFF- GAS ANALYSIS




OTE from off-gas test (%)

24hr MONITORING
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" 24 hrs — PLANT OPERATIONS s
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V. LONG-TERM DIFFUSER FOULING



x Aeration Efficiency over time: ]

Cleaning
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After Stenstrom and Rosso (2008)



Big challenges
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Blowers rule

BLOWERS DO NOT COMPRESS AIR,
THEY BLOW IT.



Plant histories of efficiency: (SOTE
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Pre-cleaning
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. Bubble release at operating regime ]

., More Open Pores




SUBMERSIBLE

Mixed liquor
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Bridging Present and Future : Fouling:Studies
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OXYGEN TRANSFER EFFICIENCY (%/ft)
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FOULING & PRESSURE DROP RESULTS
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V. LABORATORY DIFFUSER TESTING



Optical Microscopy

e Suitable for imaging orifice
dimensions and geometry

« Rapid and not |abor-intensive
e HD cameras used

e Suitable to test diffusers while
operating on bench-top mounts at
variable air flows

e Example of a silicone
membrane pore =




Electron Microscopy
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Example of using electronic microscopy to characterize surface deposits
onto membrane diffusers. This was a silicone diffuser membrane in an
industrial treatment plant, showing a combination of inorganic scales
' o et al, 2008).
et e T




Optical evidence of orifice clogging

New Fouled Cleaned



¥ Loading Cell - Stress vs.
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Thickness

eMicrometric measurements for thickness
ePressure-sensitive micrometer used

<10 membrane points sampled

«4-8 fold membrane thicknesses

at i

CALIBRATION




ORIFICE CREEP TESTS
B &




DUROMETRIC TESTS
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HALF & HALF

e QOrifice creep caused sludge to enter the
diffuser and form a crust inside




CRACKS IN FOLD

 Membrane sheath typically longer than frame
e To compensate for shrinkage
e Folds are formed



CRACKS IN FOLD







VI. AERATION MODELING AND
ENERGY FOOTPRINT ANALYSIS



% IN' MY BACKYARD

In CA, wateoance IS the
largest energy consuming
iIndustry (~15%: 30,000 GWh)

Water/Wastewater Treatment Is
second! (~6%)

Wastewater Aeration ~ 45-75% of
treatment energy '

Data: CEC (2005); Rosso and Stenstrom (2005) S



ENERGY FOOTPRINT

$$55558%

$$$?T‘$$$$ f;
aeration disinfection
P heating
$$%9$

{}

Landfill (incineration)

Aeration cost = 45-75% of plant energy (w/o influent/effluent pumping)
Rosso and Stenstrom (2005) Wat. Res. 39: 3773-3780
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AERATION & ENERGY FOOTPRINT

o ) Lighting and Misc. .
UV Disinfection a Screening
4% 3% 0% Aerated Grit Removal

1%

Primary Clarifiers
1%

AnaerobicDigestion
9%

Gravity Belf HM

2
Filtration
2%

Aeration
49%

Filter Feed P¢
5%

Chemical Addition
3%
Secondary Clarifiers
1%

Figure 1. Estimated power usage for a typical 20MGD activated
sludge facility performing wastewater treatment with nitrogen
removal in the United States (MOP32, 2009).

Aeration cost = 45-75% of plant energy (w/o influent/effluent pumping)
Rosso and Stenstrom (2005) Wat. Res. 39: 3773-3780




Process condition, (SOTE, and«$/yr

Aeration energy cost ($fyr) — $1,500,000
for high fouling diffusers

— $1,300,000

— $1,100,000

— $900,000

— $700,000

| | l $500,000
20 30 40
Months in operation Months in operation

Aeration efficiency (%, oxygen transferred to the wastewater divided by the oxygen
actually blown through the wastewater) and energy cost ($/yr) estimation for US
installations employing low and high fouling diffusers. The aeration energy cost here is
estimated conservatively as the pure energy cost of blowing air (i.e., the additional
maintenance required to run an inefficient system is not included). The difference between
the initial values in the two graphs is due to differences in diffuser pressure drop.
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Static vs. dynamic aeration modeling

DO profile

Actual DO profile modeled with

aSOTE = f (AFI
AFR = (oS

aSOTE
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New design/upgrade paradigm

Time elapsed

— 0 mo

- 6-12 mo

- 12-30 mo

- 18-42 mo

- 36-78 mo

— 39-84 mo

Project timeline

Column testing steps

Decision to design/
upgrade aeration system

Aeration testing team
selected

Engineering contract
awarded

Diffusers requested from
manufacturers

Clean- and process-
water tests complete

Aeration system design
complete

Fouling studies for
selected diffusers begin

Design amendments
(if needed)

Construction contract
awarded

Fouling studies complete

Construction substantially
complete

Upgraded system
operating




“Rigid”vs. “Flexible"Design

“Rigid” Design

ENERGY
WASTAGE

Time



VII. CONCLUSIONS



CONCLUSIONS

e Contaminants accumulation depresses oxygen
transfer and causes an increase In energy usage

e Aeration system and biological process layout
Influence oxygen transfer efficiency

e Real-time efficiency analyzers are available

e 24hr observations necessary for highest energy
savings and for truly dynamic modeling

e Long-term studies quantify fouling effects and
cleaning schedules

e Dynamic modeling allows the largest energy
and carbon footprint minimization



DIEGO ROSSO
bidui@uci.edu
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