WELCOME TO THE JUNE EDITION OF THE 2018 M&R SEMINAR SERIES
BEFORE WE BEGIN

• SAFETY PRECAUTIONS
 – PLEASE FOLLOW EXIT SIGNS IN CASE OF EMERGENCY
 – AUTOMATED EXTERNAL DEFIBRILLATOR (AED) LOCATED OUTSIDE

• PLEASE SILENCE CELL PHONES OR SMART PHONES

• A QUESTION AND ANSWER SESSION WILL FOLLOW PRESENTATION

• PLEASE FILL OUT THE EVALUATION FORM

• SEMINAR SLIDES WILL BE POSTED ON THE MWRD WEBSITE

• VIDEO STREAM OF THE PRESENTATION WILL BE AVAILABLE ON MWRD WEBSITE (www.MWRD.org: Home Page ⇒ MWRDGC RSS Feeds)
Currently, Ms. English is Research Manager, Louisville & Jefferson County Metropolitan Sewer District, Kentucky

She has 25+ years in the Environmental Laboratory and Consultant industry. Selected as one of 20 professionals from across five (5) disciplines: Chemists, Wastewater, Industry Experts, State Regulators, and Environmentalists that was selected by US EPA Office of Water to serve on the Federal Advisory Committee for Detection and Quantitation to propose a new Method Detection Limit (MDL) procedure for 40 CFR Part 136 Appendix B.

Led the successful completion and certification for the Laboratory and Field Only Lab(s) at MSD for the Kentucky Wastewater Laboratory Certification Program.

Since Jan. 2016, has led the research effort to evaluate technology for the next phase of solids handling for MSD. Also, responsible for developing, implementing and managing the research program for MSD. Determines project or program feasibility and the potential value to MSD.

B.S. in Chemistry, University of Kentucky
MBA, in Management and Finance, Webster University, St. Louis, MO
Alex E. Novak, P.E.

Current: Treatment Facilities Director, Louisville & Jefferson County Metropolitan Sewer District, Kentucky

Experience: Treatment Facilities Director with Louisville & Jefferson County MSD for over 13 years overseeing a staff of approximately 100 employees with an annual operating budget of $35,000,000, and operations of 5 wastewater treatment plants ranging in size from 4 to the 120 MGD; Project Manager with CH2M HILL for various water and wastewater projects including planning, design, and construction administration of multiple water and wastewater projects

Education: B.S. Civil Engineering, University of Missouri – Columbia
M.S. Environmental Health Engineering, University of Texas – Austin

Professional: Professional Engineer, Kentucky
Professional Engineer, Texas (Inactive Status)
Class III Wastewater License, Kentucky
Chair of the Publicly Owned Treatment Works (POTW) Committee, an advisory group to the Ohio River Valley Water Sanitation Commission (ORSANCO)
Selection of Thermal Hydrolysis Pretreatment Technology (THP) for Anaerobic Digestion

Presented by: Zonetta E. English MBA, Research Manager and Alex E. Novak, PE, Treatment Facilities Director
Goals for the Presentation

- Background on MSD
- Project Background
- Request for Expressions of Interest (RFEI)(s)
- Highlights of the Respondents
- LIFT SEEIT Experience
- Request for Qualifications
- Selection Process
- Progress to Date
- Next Steps
Facts about Louisville MSD

- Louisville Metro has a population of approx. 750,000 residents
- Combined Sewer System
- Under a $850M Consent Decree
- Morris Forman Water Quality Treatment Facility (MFWQTC) is the largest wastewater treatment facility in the State of KY
- Grossly underfunded Capital Improvement Plan for infrastructure
MFWQTC

- 120 MGD
- Wet Weather capacity 350 MGD
- Processes an avg. of 26,000 dry tons/year of biosolids from (2012-2017)
- Approx. 35 acre site
- Regional Plants sludge is transported by tankers from three (3) regional plants
- Derek Guthrie WQTC sludge is delivered by a force main
Project Background

- In 2001, MSD commissioned a new thermal drying system
- Rotary Drum Dryers System (DDS)
- In 2005, MSD received approval from the Kentucky Division of Waste Management for Land application of the thermally dried biosolids
• DDS is at the end of its useful life
• In **March of 2016**, solicited a Request for Expression of Interest (RFEI) for Potential Biosolids Processing Technologies and Management Methodologies
• Contacted over 48 companies to make them aware of the RFEI release.
• Requested information regarding Technology, Service Approach, Site Requirements, Full scale projects/location, Funding, Management (e.g. own, contract operations, etc.), project team (if applicable)
RFEI Process

- Directive: Open it Up
- Contacted City of Houston
- Research online other RFEI(s)
- Utilized Business Cards
- Online Search of Biosolids Processing Entities: Engr. Firms, Technology Vendors, Equipment Manufacturers, etc.
What We Learned from the RFEI(s)?

• Multiple entities were interested in providing biosolids processing and management technologies

• Array of technologies: Hydrothermal Processing (HTP), Thermal Hydrolysis, Co-Digestion, Expanded Mesophilic Digestion, Struvite Recovery, Belt Dryer Drying, Chemical Fertilizer e.g. Anuvia®, Fluid Bed Dryer, Enhanced Biological Phosphorus Removal (EBPR), etc.

• Multiple biosolids products: Class A, Class B, Class AA, Biocrude oil, Root Activated Fertilizer, etc..
NuTerra Management LLC (Jacksonville, FL)

- Partner with other firms to optimize performance and minimize cost (i.e., for anaerobic digestion, methane gas production and energy generation)
- Final Product Class A or Class B
 Proposed HTP as the processing solution
- Offered Several Procurement methodologies
Genifuel Corporation (Salt Lake City, UT)

- Hydrothermal Processing (HTP)
- Install centrifuge systems at our regional plants
- Eliminates solids generation
- Genifuel HTP not fully demonstrated in commercial operation at a wastewater treatment plant
- This system is currently part of a pilot project (TWRF/DOE) at Central Contra Costa Sanitation District Martinez, CA
CBA Environmental Services (Hegins, PA)

- Biosolids to Renewable Fuel (BTRF)
- Produce a biofuel to co-blend and sell to the electric power industry within 200 miles radius of Port of Louisville (POL)
- Process could fit in MFWQTC footprint, end or would transfer product to POL for co-blending and shipment, transport by pipe
- 2 Options:
 1. Partner with MSD to monetize and advancing the nutrient credit trading project to develop a sustainable program
 2. Lease/Operate biosolids drying facility to optimize drying in production of BTRF

(1) Partner with MSD to monetize and advancing the nutrient credit trading project to develop a sustainable program

(2) Lease/Operate biosolids drying facility to optimize drying in production of BTRF
One World Clean Energy, Inc. (Louisville, KY)

- Proprietary technology converts the slurry of wet sludge through the thermal chemical process and gasification into syngas
- Combusts this syngas to produce electricity
- Product: Biochar and electricity

- MFWQTC operations would have no changes prior to cake drying (wet cake)
- The first commercial scale pilot was scheduled for Clarkson University in late 2016
Synagro Technologies, Inc. (Baltimore, MD)
Multiple Options

- **Option A:** Refurbish Andritz Dryer Equipment
- **Option B:** Thermal Hydrolysis for all the Primary, WAS, and hauled sludge, and Digestion
 Class A
 Option of Class B
- **Option C:** New Drying Process (e.g. Belt System Dryer)
- **Option D:** Alternative Processing-Process undigested/digested solids and organic waste (food processing and pre/post consumer food waste)
RFEI Respondents-Merrill Brothers (Kokomo, IN)

• Option A.
 Take 100% of biosolids produced by centrifuges, process off-site for technology to produce a Class AA product

• Option B.
 – B1 Omni Processor® is a Combined Heat and Power (CHP)
 • Omni Processor would remain at MFWQTC
 • All processes up to and including mechanical dewatering would remain in place.
 – B2 Decommission Anaerobic Digesters. Direct primary solids to dewatering
 – B3 Site Omni Processor at regional plants, transport dewatered cake
<table>
<thead>
<tr>
<th>Organization</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anuvia (Zellwood, FL)</td>
<td>Produce fertilizer with a proprietary process that converts the organic material</td>
</tr>
<tr>
<td>Kore Infrastructure (EL Segundo, CA)</td>
<td>Thermally convert dried MSD Biosolids to renewable energy in the form of pyrogas and biochar-Co-Digestion anaerobic facility</td>
</tr>
<tr>
<td>Star BioEnergy (Ft. Wayne, IN)</td>
<td>Construct a co-digestion facility off-site, source segregate organic waste co-digested with the solids from the treatment plant</td>
</tr>
<tr>
<td>Suez (Atlanta, GA)</td>
<td>Low temperature Drying (no changes to our centrifuges). 20 Full scale Operations ranging from 5,000-180,000 wet tons/year outside of the US</td>
</tr>
</tbody>
</table>
RFEI Respondents (Cont.)

- Andritz (Arlington, TX)
- Ostara (Vancouver, CA)
- Schwing Bioset (Summerset, WI)
- Evoqua (Waukesha, WI)
- Veolia (Tampa, FL)

- GE Power Water and Process Technologies (Oakville, ON)
- USC BioEnergy (Miamiburg, OH)
- Gryphon Environmental LLC (Owensboro, KY)
RFEI Respondents-Engineering Firms

- Khafra
- Black and Veatch
- GRW
- H&S Resource Management (Lexington, KY)
Evaluation Hierarchy by Consultant

• Established Technologies
 – widely used (i.e. more than 25 facilities in the United States (US))

• Innovative Technologies
 – tested full scale in the US
 – available and implemented in the US
 – have some degree of initial use
 – established technologies overseas with some degree of initial use in the US

• Embryonic Technologies
 – In the development stage and/or tested at laboratory or bench scale
In the Meantime-The Season of Giving Comes Early!

We wish you a Merry Chri...

IT’S NOVEMBER!!
The Leaders Innovation Forum for Technology sponsored by WERF and WEF

- Released invitation for SEEIT Scholarship on Nov. 1, 2016
- Extensive Application Process
- Based on references in the RFEI, we located places where technologies were already in place
- Initial Review: Spain, Belgium, UK
- Requested to visit Seven (7) facilities in the UK
- Notified of award in Jan. 2017
- Deliverables: Video, Travel Report, and agree to support other Utilities with Technology Information
<table>
<thead>
<tr>
<th>Technology</th>
<th>Facility</th>
<th>Location</th>
<th>Design Criteria</th>
<th>On-Site Date</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Hydrolysis/Exelys (2013)</td>
<td>Esholt</td>
<td>Bradford</td>
<td>30,000 dry tons/year</td>
<td>5/18/17</td>
<td>Matthew Armitage</td>
</tr>
<tr>
<td>Cambi Batch Flow (2013)</td>
<td>Seafield</td>
<td>Edinburgh, Scotland, UK</td>
<td>100 dry tons/day (dptd)</td>
<td>5/12/17</td>
<td>Mark Keast</td>
</tr>
<tr>
<td>GE Monsal Biological Hydrolysis by Mesophillic AD 2001</td>
<td>Aberdeen</td>
<td>Scotland, UK</td>
<td>16,000 tonnes of dry solids/year</td>
<td>5/15/17</td>
<td>Iain Washer/Andrew Scott</td>
</tr>
<tr>
<td>GE Monsal sequential gas mixing technology (2013)</td>
<td>Davyhulme</td>
<td>Manchester, UK</td>
<td>91,000 dry tonnes/year</td>
<td>5/16/17</td>
<td>Nicola Morris</td>
</tr>
<tr>
<td>Advanced Anaerobic Digestion and Biowaste (2012)</td>
<td>Avonmouth</td>
<td>Bristol, UK</td>
<td>40,000 dry tonnes/year</td>
<td>5/19/17</td>
<td>Ian Law</td>
</tr>
</tbody>
</table>
Site Pictures

Class A Product produced at Seafield

Gas Sphere at Nigg Plant
THP Systems

Cambi™ - Davyhulme WwTw

Veolia – BioThelys™- Oxford WwTw
Pre THP/Post THP Dewatering at Aberdeen Nigg

Volute Press
Hiller DeCapress Centrifuge
What Did We Learn?

• Much more emphasis on safety and plant security
• Improvement needed in having spare parts on hand
• Maximization of digester gas production (RINs)-Gas to Grid
• Must be concerned about side stream treatment
• Mums the word on Maintenance Costs
Back to Fall 2016
Biosolids Processing Solution RFQ 16-1219

• Issued Nov. 7, 2016
• Originally Due Dec. 16, 2016
• Issued Addendum to extend the date to Jan. 24, 2017
• Conducted (2) Days of Site visits Jan. 4th and 5th, 2017
• 2 phases to the RFQ
1. Cambi

- **Lead:** Suez/Cambi
- **Engineering:** Brown & Caldwell
- **Construction:** Pepper Lawson Waterworks
- **Operation:** Suez
- **Offering:** DBOO or DBO, open to DB or DBFO
- **Technology:**
 - Pre-dewatering
 - **Cambi Thermal Hydrolysis**
 - Digestion
 - Post dewatering
 - Replace existing drying with partial drying (partial to 65%, Class A): didn’t indicate what type of dryer to be used other than being indirect drying
2. Schwing Bioset

- **Lead:** Schwing Bioset
- **Engineering:** None
- **Construction:** None
- **Operation:** None but offer Biosolids Distribution Services (BDS) for product marketing
- **Offering:** Equipment supplying and market distribution of product
- **Technology:**
 - Existing dewatering
 - **Bioset:** Chemical stabilization (lime and sulfamic acid) to Class A
3. One World Clean Energy Inc.

- **Lead:** One Water Clean Energy
- **Engineering:** Power Engineers and Western Kentucky University
- **Construction:** Miron
- **Operation:** One World Clean Energy, Inc.
- **Offering:** DBO or DBOT
- **Technology:**
 - Thickened or dewatered sludge
 - Gasification
4. Veolia Water

- **Lead:** Veolia Water
- **Engineering:** MWH/Stantec
- **Construction:** The Walsh Group
- **Operation:** Veolia Water
- **Offering:** Progressive DBO or DBFO or DBOO
- **Technology:**
 - Pre-dewatering
 - **Thermal Hydrolysis:** Kruger/Veolia
 - Digestion
 - Post dewatering
 - Replace existing drying with indirect drying (Seghers) to >90%, Class A
5. Denali

- **Lead:** Denali
- **Engineering:** R3M Engineering supported by local (DLZ, Magna Engineers and Webster Environmental)
- **Construction:** Kokosing Industrial
- **Operation:** Denali (acquired WeCare Ag-Advantage)
- **Offering:** Progressive DBO or DBFO
- **Technology:**
 - Digestion:
 - Enhancement (Quasar Energy Group).
 - New digesters in the Chlorine Railcar Unloading Area or the Bio-roughing Tower Area
 - Replace direct drum drying with indirect thin film drying to 60% (This is still Class B and not Class A!)
6. Synagro

- **Lead:** Synagro
- **Engineering:** Andritz EPC – Gresham, Smith and Partners
- **Construction:** Andritz EPC – Garney Construction
- **Operation:** Synagro
- **Offering:** Progressive DBO or DBFO or DBOO (on or off site)
- **Technology:**
 - Digestion (offered to enhance digestion with Monsal/GE hydrolysis technology that is now owned by Suez!). Technology enhances digestion but does not offer increased digestion capacity like THP
 - Post dewatering
 - Andritz Direct Drum Dryers (>90%, Class A)
7. Vandecar

- Lead: Vandercar
- Engineering: Khafra Engineering
- Construction: Dugan and Meyers, LLC
- Operation: Khafra Operations
- Offering: PPP
- Technology:
 - Liquid pumping or gravity by force main to Jefferson County (300 acres)
 - HVAC assisted solar drying: not engineered greenhouse drying such as the one offered by Kruger, Parkson, or Huber
 - It is not clear how they intend to get Class A biosolids
8. NEFCO

- **Lead:** Daniel O’Connell and Sons (DOS)
- **Engineering:** DOS and engaging Tighe and Bond
- **Construction:** DOS
- **Operation:** NEFCO
- **Offering:** DBOM (maintain), but can do DBFOM
- **Technology:**
 - Provide mechanical thickening for primary sludge to reduce digester volume needed, allow ability to divert some of the TWAS to digestion
 - Restore or replace the Andritz Drum Dryers with in house direct drum drying system
Bid No. 16-1219 Scoring Criteria

- Organization and Management - 20 points
- Technical Qualifications and Capability - 50 points
- Financial Qualifications and Capability – 30 points
How Did We Evaluate

- **Initial Summary**
- **Project Synopsis**
- **Technology Solution**
- **Technical Experience**
- **Capital and Staffing Summary**

<table>
<thead>
<tr>
<th>Company/Project Team</th>
<th>Point of Contact</th>
<th>Defined Role(s)</th>
<th>Technology</th>
<th>Proposed Management Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suez, Cambi Inc, and Pepper Lawson (wholly owned subsidiary of Ferrovial)</td>
<td>Thomas Bintz, Cambi Contact Info: 832-687-2209</td>
<td>Project Guarantor: Suez or Pepper Lawson Design Engineer; Brown and Caldwell with Support from APLA; Construction: Pepper Lawson Waterworks; Technology Provider: Cambi</td>
<td>Thermal hydrolysis followed by anaerobic digestion, Biosolids will be Class A</td>
<td>DBOO or Design-Build-Operates, Open to Design-Build-to-DBBO Proposal</td>
</tr>
<tr>
<td>Schwing Bioset Inc.</td>
<td>Eric Wanstrom, Schwing Bioset, Info: 213-714-0177</td>
<td>Schwing Bioset equipment manufacturer, IBD Product Distribution</td>
<td>Install a Class AA treatment process and the treat the biosolids for beneficial reuse via Stabilization and Thermal Drying</td>
<td>Design Build</td>
</tr>
<tr>
<td>Veolia, MWH/Valtere, Walsh</td>
<td>Tim McLeod, Veolia, 865-693-1488</td>
<td>Key Technology: Veolia, Design/Permitting, MWH/Valtere, Construction/Wallis, Marketing/Sales, Veolia</td>
<td>Co-treatment primary sludge and secondary solids, first-stage dewatering, thermal hydrolysis (TH) followed by mesopholic anaerobic digestion using the existing tanks, second stage dewatering and in-direct heat</td>
<td>Progressive Design Build Operate (DBO), with alternative (DBBO), DBOO or PPP</td>
</tr>
<tr>
<td>Denali, Kokosing, R3M Engineering, Quasar Energy, D2, Webster Env., Magna Engineers, CMS Associates, and Sierra Energy Capital</td>
<td>Michael Nicholson, Denali Water Solutions, LLC, 618-249-5422</td>
<td>Lead Development: Denali, Lead Contractor, Kokosing, Lead Engineer: R3M Engineering with support from CMS Associates, D2, Magna Engineers and Webster Environmental</td>
<td>Construct a new biosolids indirect Thin-Film Drying installation to be located in the existing dewatering facility. Also, provided options for the repair, replacement, and/or expansion of the solids thickening and digestion systems currently operating at the MFWQTC Services. Class A product will be produced.</td>
<td>Prefers for contract structure for Design-Build/Value-Operate (DBVO) and/or Design-Build-Operate (DBO). Denali is prepared to finance the biosolids processing facility under terms and conditions acceptable to MSD.</td>
</tr>
<tr>
<td>Synagro, Andritz, Graham Smith, Keanensco, and Gerry Construction</td>
<td>Robert Pepperman, 643-510-5005</td>
<td>Project Guarantor: Synagro WWT, Andritz Design Build Proposing Andritz, Drum Drying Process (DDP) Contractor, Graham, Smith and Partners, Engineering as the biosolids stabilizing technology, plans refurbishing and upgradiing existing equipment</td>
<td>Synagro has submitted (4) separate proposals: DBO, DBBO Financing, DBOO Financing, DBFO Financing, DFO Location</td>
<td></td>
</tr>
</tbody>
</table>
Technical Experience

• Design and Engineering Projects
• Construction
• O&M Experience, Product Distribution, Marketing and Disposal
• Solids Processing Technology and Major Equipment
Site Location and feasibility was considered
SOQ Scoring

SOQ Overall Scoring
Biosolids Management Solution, Bid No. 16-1219

<table>
<thead>
<tr>
<th></th>
<th>Organization and Management (Max = 20)</th>
<th>Technical Qualifications and Capability (Max = 50)</th>
<th>Financial Qualifications and Capability (Max = 30)</th>
<th>TOTAL SCORE (Max = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambi/Suez</td>
<td>20</td>
<td>44</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>Schwing/Bioset</td>
<td>16</td>
<td>8</td>
<td>3.5</td>
<td>27.5</td>
</tr>
<tr>
<td>One Water Clean Energy</td>
<td>6</td>
<td>12.5</td>
<td>6</td>
<td>24.5</td>
</tr>
<tr>
<td>Veolia/MWH</td>
<td>20</td>
<td>47</td>
<td>30</td>
<td>97</td>
</tr>
<tr>
<td>Denali/Kokosing</td>
<td>16</td>
<td>40</td>
<td>15</td>
<td>71</td>
</tr>
<tr>
<td>Synagro/Andritz</td>
<td>20</td>
<td>46</td>
<td>23.5</td>
<td>89.5</td>
</tr>
<tr>
<td>Vandercar</td>
<td>8</td>
<td>16.5</td>
<td>6</td>
<td>30.5</td>
</tr>
<tr>
<td>NEFCO</td>
<td>20</td>
<td>48</td>
<td>15</td>
<td>83</td>
</tr>
</tbody>
</table>
Thermal Hydrolysis – Advanced Anaerobic Digestion Pretreatment Process- Hazen and Sawyer

A sludge “pressure cooker” operating at about 330°F/165°C (90 psig)
Thermal Hydrolysis Process

Process

- Treats dewatered sludge (from 14 to 17%) prior to anaerobic digestion, under the following conditions:
 - High temperature of 150 - 170°C (300 – 340°F)
 - Under pressure of 6 to 9 bars (90 – 130 psi)
 - Reaction time 22 to 30 min
- Dewatered sludge Input to digestion 8 to 11%

Result

- Decrease viscosity
 - Allows sludge mixing at higher concentration
 - Decrease digestion volume
- Sterilized sludge (Class A)
- Improves anaerobic digestion
 - Increase VS reduction
 - Improve biogas production
 - Reduce mass for further processing
- Improve final dewatering > 30% TS
Benefits of THP

- Reliable solids treatment and handling for the next 20 years
- Increased solids reduction through enhanced anaerobic digestion with existing digesters
- Increased digester gas production, allowing for possible recovery/energy production for on-site use (and reduction of utility costs)
- Capacity to handle existing MSD treatment facilities and potential other organic waste sources
- Continuation of sustainable/reliable beneficial use of biosolids
- Continued high quality product
- Opportunities for future beneficial use projects:
 - Acceptance of outside high strength wastes
 - Increased gas capture and reuse
Project Fact Sheet

Morris Forman WQTC Biosolids Process Upgrades
A Sustainable Approach to Resource Recovery and Long-Term Management of Biosolids

The Current Solids Handling System Requires Significant Upgrades

- Existing Driers are at End of Useful Life – 3 of 4 Operational
- Typically 2 of 5 Dewatering Centrifuge Out of Service — Not Keeping Up with Demand
- Increases in Odor and Reduction in Treatment Reliability
- ~20% of Dewatered Cake is Going to Landfill
- Limited Digester Capacity for Waste Activated Sludge
- Plant Footprint Provides Limited Area for Expansion

Project Benefits

- Reliable solids treatment and handling for next 20 years
- Increased solids reduction through enhanced anaerobic digestion within existing digesters
- Increased digester gas production, allowing for possible recovery/energy production for on-site use (and reduction of other utility costs)
- Capacity to handle existing MFWQTC, satellite facilities, and potential other organic waste sources (future) without adding more digester capacity
- Continuation of sustainable/reliable beneficial reuse of biosolids — Class A quality
- Continued high quality end product under the Louisville Green name
- Opportunities for future beneficial reuse projects:
 - Drying, pelletizing
 - Acceptance of outside high strength waste (HSW)
 - Increased gas capture and reuse.

[Diagram of Thermal Hydrolysis Process (THP) Overview]

Waste Activated Sludge (WAS) is fed into the THP process where it is heated and hydrolyzed, converting the organics into more easily biodegradable compounds. The resulting biogas is captured and used for energy production. The treated biosolids are then further processed for beneficial reuse.
Next Steps: After Phase 1

• Develop a Project Definition Document (PDD)

• Develop a Request for Proposal (RFP)
Project Overview: Refurbish/Replace
Project Definition Document

• 5-10% Design
• Flows and Loading Information
• Sizing requirements for the Thermal Hydrolysis Pretreatment (THP)
• System requirements: Digesters, Pre-dewatering, Post-dewatering, Odor control, etc..
Nuances of the Project

- Site is approx. 35 acres
- Surrounded by residential and public recreation parks
- Neighbors: Organics, Chemicals, Plastics and Synthetic Fibers (OCPSF) Industries and Petroleum Distribution and Storage
- Local Ordinance-No New Digesters
Unintended Consequences of the Project

• Sidestream Treatment for Ammonia that will be recycled to the head of the plant
• Replacement of Equipment upstream of the process
• Relocation of existing process equipment ahead of this project
Where are We Now?

- Finalized Project Definition Document (PDD)
- The project delivery method will be Progressive Design Build
- We will own-operate the facility with a minimum of 12 months of O&M Support from the successful bidder
- Notifying (2) Short-listed Teams to determine whether they will submit RFP with the required team composition
- Pursuing low interest loans
- Expected Project Costs -120 M
Questions?