Midlothian — Oak Forest
Natalie Creek

NATALIE CREEK FLOOD CONTROL PROJECT

Project Overview
The Metropolitan Water Reclamation District of Greater Chicago’s (MWRD’s) Natalie Creek flood control project will address overbank flooding in Midlothian and Oak Forest by upsizing restrictive culverts, widening the channel at several locations, and creating a new stormwater storage basin along Natalie Creek. The project will increase the level of protection to existing residential and commercial structures that are prone to flooding in frequent storm events. During a 100-year storm event, the improvements will provide flood reduction benefits for 237 structures affected by overbank flooding along Natalie Creek north of the Central Park Detention Basin in Oak Forest, between Natalie Drive and Long Avenue, to 146th Street and Pulaski Road in Midlothian.

Background
From 1981 to 2014, the area experienced a 100-year storm, two 50-year storms, two 25-year storms, three 5-year storms and three 2-year storm events. In 2014, Midlothian flooded five times in a nine-week period. Only one-year or less storm events occurred during that period, signaling that the village was flooding starting at smaller storm events. By improving channel conditions along Natalie Creek, the MWRD’s investment will mitigate flooding concerns.

Project Summary
The $7.63-million flood control project will mitigate the costly effects of overbank flooding along 15,800 linear feet of Natalie Creek. Planned construction for the project in Oak Forest will include erosion control, reshaping along the channel, and sediment removal at Laporte and La Crosse Avenues. In Midlothian, the MWRD will renovate a concrete channel, upsize culverts along Natalie Creek at 149th Street near Kilpatrick, Kenton, Kolmar, Kilbourn and Kostner avenues, improve a conduit outfall grate at 146th Street and Pulaski Road, construct a new detention basin facility in the vicinity of 147th Street and Kostner Avenue and expand an existing detention basin at 149th Street and Kilpatrick Avenue. The project is expected to be completed by 2020.

Engineering Consultant: Burns & McDonnell Engineering Co., Inc
Engineering Contractor: IHC Construction Companies, LLC