4.0 REQUIREMENTS FOR SOIL EROSION AND SEDIMENT CONTROL

4.0.1 ARTICLE SUMMARY

Land disturbances resulting from construction activities remove the protective vegetative cover from soil and increase the risk of erosion and subsequent sedimentation. These activities include, but are not limited to clearing, grubbing, grading, excavating, filling, and trenching. Controlling erosion and preventing sedimentation within receiving systems are critical in preventing negative impacts to conveyance capacity and water quality. The goal of soil erosion and sediment control is to minimize the potential of these adverse impacts.

To achieve this goal, the WMO requires erosion and sediment control practices to be designed and incorporated into all phases of the project. Erosion control practices are preventative strategies designed to minimize the occurrence of erosion and to stabilize exposed soil. Sediment control practices are strategies that incorporate structural measures to contain sediment in the event that erosion occurs. While functionally different, these practices should be selected and implemented in a complimentary manner to minimize potential adverse impacts.

The WMO establishes the following standards for soil erosion and sediment control:

- General Soil Erosion and Sediment Control Requirements (§400)
- Temporary Soil Erosion and Sediment Control Requirements (§401)
- Permanent Soil Erosion Requirements (§402)

This section of the TGM provides guidance on erosion and sediment control practices during and after construction activities to comply with the WMO requirements.

NOTE: All bold words are defined in Appendix A of the WMO and the TGM.
4.1 General Soil Erosion and Sediment Control Requirements

§400.1 of the WMO requires erosion and sediment control practices for all projects, regardless of the area of land disturbance or whether it is located within a combined sewer area or separate sewer area. A soil erosion and sediment control plan and Schedule P are required to be submitted for every project regulated under Article 2 of the WMO; however, Schedule P is not required when the project is limited utility trenching located outside the flood protection area without soil stockpiles.

§400.5 through §400.7 of the WMO requires erosion and sediment control practices to comply with the design criteria and specifications of the Illinois Urban Manual (IUM). Erosion and sediment control practices that are equally effective as those in the IUM may be used with approval from the District. When design criteria and specifications are not provided in the IUM, practices must comply with the requirements of this TGM. The IUM is available online and can be viewed at the following link: illinoisurbanmanual.org.

§400.4 of the WMO requires all projects that are subject to the Illinois Environmental Protection Agency (IEPA) General National Pollutant Discharge Elimination System (NPDES) Permit IRL10 to comply with the submittal and approval requirements of IRL10. Note that the approved Watershed Management Permit does not preclude an applicant from submitting a Notice of Intent (NOI) with a Storm Water Pollution Prevention Plan (SWPPP) to the IEPA and complying the IRL10 requirements. The IEPA and USEPA provide the following resources:

- ILR10 (General Storm Water Permit for Construction Site Activities) is available online and can be viewed at the following link: www2.illinois.gov/epa/topics/forms/water-permits/storm-water/Pages/general-permits.aspx
- NOI information is available online at the following link: www2.illinois.gov/epa/topics/forms/water-permits/storm-water/Pages/noi.aspx
- SWPPP development guidance is available online and can be viewed at the following link: epa.gov/npdes/developing-stormwater-pollution-prevention-plan-swppp

§400.3 of the WMO requires all erosion and sediment control practices for projects that discharge directly into Jurisdictional Waters of the U.S. to be designed for the 25-year storm event with a 24-hour duration. Additional soil erosion and sediment control requirements of the United States Army Corps of Engineers (Corps) are available online through the Corps website at the following link: lrc.usace.army.mil/Missions/Regulatory/SESC.aspx

§400.8 of the WMO requires all erosion and sediment control practices to be functional before disturbances are made. Installing these practices prior to starting construction reduces the need for additional or more substantial practices during later stages of construction.
4.2 Temporary Soil Erosion and Sediment Control Requirements

4.2.1 General Temporary Soil Erosion and Sediment Control Requirements

Temporary erosion and sediment control practices are preventive techniques, measures, or structural controls used prior to permanent stabilization to manage the rate, quantity, and quality of stormwater runoff. Erosion control practices stabilize soil by covering and/or binding soil particles to prevent erosion. Sediment control practices capture and contain sediment after erosion has occurred.

§401.1 of the WMO requires all waste generated as a result of a project to be legally disposed of and to be prevented from being transported offsite by either wind or water. Construction site management controls must be implemented throughout the duration of the project. These controls incorporate erosion and sediment control practices as well as procedural controls to prevent construction activities from polluting stormwater runoff. Construction site management controls include the following:

- Material Handling and Waste Management: proper delivery, storage, and removal of construction materials and wastes
- Spill Prevention and Control Plan: spill prevention, containment, and clean up
- Equipment and Vehicle Use: designated fueling, cleaning, and maintenance areas
- Street Sweeping and Vacuuming: timely removal of sediment tracked onto roadways
- Allowable Non-Stormwater Discharge Management: implementation of appropriate pollution prevention measures prior to discharge
- Stockpile Management: proper location of stockpiles and appropriate erosion and sediment control practices
- Signage: identify vehicle wash and maintenance stations; designate solid, liquid, and hazardous waste storage locations; and convey any other important information

4.2.1.1 Practice Design Considerations

Appropriate erosion and sediment control practices must be selected to address specific site and adjacent property conditions to ensure effective operation throughout the construction phase of the project. Primary emphasis should be placed on erosion control practices and a secondary emphasis should be placed on sediment control practices to contain sediment. Refer to 4.2.4 for typical erosion and sediment control practices.
The IUM provides a detailed planning procedure to develop a soil erosion and sediment control plan. The following items must be considered and incorporated into the soil erosion and sediment control plan:

- Soil type and susceptibility to erosion
- Minimize soil exposure, compaction, and disturbance of steep slopes
- Control stormwater to minimize soil erosion and sediment discharged from the site
- Control stormwater discharges to minimize erosion at discharge locations and minimize downstream channel and stream bank erosion
- Provide and maintain natural buffers around surface waters
- Direct stormwater to vegetated areas to increase sediment removal and maximize stormwater infiltration

§401.5.B and §401.6.A of the WMO requires the following items to be considered when determining the appropriate type and location of soil erosion and sediment control practices:

- Seasonal and topographic conditions (e.g., seeding windows, steep slopes)
- Tributary area of the practice
- Proximity to flood protection areas
- Maintenance requirements of the practice

A geotechnical report should be used to evaluate the potential erosion susceptibility of unprotected soils. Site-specific soil information is available online through the NRCS website at websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.

4.2.1.2 CONSTRUCTION REQUIREMENTS

§401.5.D and §401.6.B of the WMO requires temporary erosion and sedimentation control practices to be continuously maintained throughout construction and during any periods of construction shutdown until permanent soil stabilization is achieved.

§401.5.E of the WMO requires permanent stabilization practices to be installed within 7 days where construction activities have temporarily or permanently ceased, except:

- Where construction activities resume within 14 days from when activities ceased; or
- Where precluded by snow cover, erosion control practices must be installed as soon as practicable.
Temporary erosion control practices must be removed as soon as practicable, but no longer than 7 days after construction activities have temporarily or permanently ceased. This requirement may be waived in areas where construction activities are scheduled to resume within 14 days from when activities ceased. Where snow cover precludes the completion of the stabilization practices, the erosion control practices must be installed as soon as practicable.

All open areas that are to remain idle throughout the winter must be stabilized with temporary or permanent vegetation prior to the end of the fall growing season. Seeding should be performed during the growing season to promote rapid establishment of vegetation. In the event that temporary or permanent vegetation cannot be established prior to winter shutdown, the soil erosion and sediment control plan must implement erosion control practices that do not rely on vegetation (e.g., mulch, erosion control blankets). Sediment control practices (e.g., silt fence, inlet control devices) must also be installed and maintained throughout the winter shutdown period.

4.2.1.3 **Protection of Volume Control Practices**

Volume control practices are susceptible to failure during construction, therefore; it is important that staging, construction means/methods, and erosion and sediment control practices all be considered during installation. To protect the long-term functionality of volume control practices, the following measures must be considered and incorporated into the construction sequencing and the soil erosion and sediment control plan:

- **Volume control practices** should be installed toward the end of the construction schedule.

- The **tributary area** must be stabilized prior to the installation of the volume control practice.

- Soil compaction must be minimized to the maximum extent possible. Appropriate measures (e.g., fencing) should be used to prevent heavy construction equipment traffic from accessing the area.

- **Volume control facilities** must be protected by a double-row silt fence, coir logs, or equivalent measure during construction.

- In general, **volume control facilities** should not be used as temporary sediment traps during construction. Where this is not practicable, that **applicant** must provide additional construction notes and/or details on the plans demonstrating measures to protect the functionality of the facility.
4.2.1.4 **Soil Stockpiles**

Soil stockpiles are susceptible to erosion and must be protected with soil stabilization practices (e.g., seeding, erosion control blankets). Soil stockpiles should not be located on impervious areas or where concentrated flows may occur.

§401.6.F of the WMO requires that all soil stockpiles incorporate perimeter sediment control practices (e.g., silt fence).

§401.5.F of the WMO requires soil stockpiles to be either temporarily or permanently stabilized depending on the time the stockpile will be dormant:

- Stockpiles dormant between 30 days and 12 months must be temporarily stabilized within 7 days of the formation of the stockpile; or
- Stockpiles dormant more than 12 months must be permanently stabilized within 7 days of the formation of the stockpile.

4.2.1.5 **Inspection Requirements**

Erosion and sediment control practices must be inspected:

- When installation is completed and prior to any disturbance;
- At least once every 7 calendar days; and
- Within 24 hours or by the end of the following business/workday when a storm event or equivalent snowfall/snowmelt is greater than or equal to 0.5 inches.

If construction activities have ceased due to frozen conditions, inspections may be reduced to once per month.

Inspection reports should document whether erosion and sediment control practices are installed and performing properly, as described by the practice standards contained within the IUM. All remedial actions taken to repair or replace erosion and sediment control practices should be completed within 7 days of discovery, unless the practice is allowing a pollutant discharge, in which the remedial action must occur immediately.

For additional guidance on inspections, refer to Article 10 of this TGM.

4.2.1.6 **Flood Protection Areas**

Flood protection areas (FPAs) include floodplains, floodways, riparian environments, wetlands, and wetland buffers. These areas provide several water quality and flood protection benefits; therefore, they require additional erosion and sediment control practices and considerations to preserve their functions.
§401.2 of the WMO requires that **FPAs** be protected by a double-row silt fence or equivalent practice. Additional soil **erosion** and **sediment control practices** should be implemented as necessary to protect **FPAs** from negative impacts associated with construction activities.

§401.3 of the WMO prohibits stockpiles to be placed within **FPAs** in order to prevent sediment-loading, impairment of ecological functions, and reduction of storage and conveyance capacity during **storm events**.

The implementation of preventative measures prior to construction, such as the preservation of vegetated buffers, use of fencing and signage, and avoiding disturbances to **FPAs**, are some of the most effective means of protection. Additionally, construction schedules and planning should include all practicable measures to avoid disturbances to **FPAs**.

Note that if **development** is located within an **FPA** the provisions of **Article 6** of the WMO apply.

4.2.1.7 Temporary Stream Crossings

Temporary stream crossings (e.g., culvert, ford, bridge) are **structures** designed for short-term use (one year or less) to allow construction vehicles and equipment to cross a stream. These **structures** protect the ecosystem while preventing damage to stream morphology and downstream sedimentation. All necessary permits (**Corps**, **FEMA**, **IEPA**, Section 401 and Section 404 permits, etc.) must be obtained prior to installation of the temporary stream crossing.

§401.4 of the WMO requires temporary stream crossings be designed to convey the 2-year **storm event** with a 24-hour duration without overtopping unless the **District** approves a more frequent design event. In addition, the following must be considered and incorporated into the design of the temporary stream crossing:

- Temporary stream crossings must not reduce the carrying capacity of the channel.
- The entire crossing must be designed to withstand hydrodynamic, hydrostatic, and erosive forces up and including the **base flood** event (100-year flood) without washing out.
- Upon completion of construction, temporary stream crossings must be entirely removed, and the stream bed and banks restored to a stable non-erosive condition that incorporates native vegetation where appropriate.
- **Erosion** and **sediment control practices** must be implemented and maintained during the installation, **maintenance**, and removal of temporary stream crossings.
Temporary stream crossings should not cause erosion or damage to downstream or adjacent properties due to increased water surface elevations. Disturbances to or removal of vegetation should be limited to that which is necessary to complete construction. When possible, vegetation should be trimmed no lower than ground level to preserve the root structure and promote re-growth. Riparian vegetation should be covered by a sufficient layer of clean river run cobble or an equivalent measure to prevent damages to the underlying soil and root structure.

All temporary stream crossings should be inspected frequently and following a storm event for any blockages in the channel and for sediment or debris upstream or within the temporary stream crossing structure.

4.2.2 **Temporary Erosion Control Requirements**

Temporary erosion control practices are measures that stabilize soil by covering and/or binding soil particles to prevent erosion due to rainfall, stormwater runoff, and wind. These measures prevent soil particles from being detached from the land surface and being transported and deposited from the project to receiving stormwater facilities and waterways.

Appropriate erosion control practices must be selected to address specific site and adjacent property conditions to ensure effective operation throughout the construction phase of the project. Refer to 4.2.4.1 for typical erosion control practices.

Additionally, the following items must be considered and incorporated into the project to comply with the erosion control requirements of the WMO:

- Velocity dissipation measures must be placed at stormwater discharge locations and along the length of any outfall channel as necessary (§401.5.G).
- Earthen embankment side slopes must not exceed 3:1 (H:V) and must be stabilized with an erosion control blanket (§401.5.H).

4.2.2.1 **Protection of Existing and Establishment of New Vegetation**

§401.5.A of the WMO requires existing vegetation to be preserved, where practicable, to minimize the area of soil disturbance. Vegetative cover protects soil from erosion caused by rainfall, stormwater runoff, and wind. Vegetation attenuates stormwater runoff and can provide water quality enhancement through interception and filtration of sediment and other pollutants.

Preservation of existing vegetation is effective for maintaining stabilized soils in areas where no construction activity is planned or will occur at a later time. Preservation must always be considered as a primary method of soil stabilization to reduce the need of additional or more substantial erosion and sediment control practices.
In addition to preservation of existing vegetation, general guidelines to minimize erosion resulting from soil disturbing activities include:

- Limit the area of exposed soil.
- Limit soil disturbing activities during the rainy season.
- Protect utility trenches or other excavations at the end of each workday.

§401.5.C of the WMO requires erosion control practices to be incorporated in areas not under development where existing ground cover does not consist of appropriate stabilizing vegetation. This is to limit the area susceptible to soil erosion and sedimentation and protect against erosive discharges from the development.

4.2.3 Temporary Sediment Control Requirements

Temporary sediment control practices capture and contain sediment after erosion has occurred. These measures are designed to capture sediment-laden stormwater runoff prior to discharging into receiving stormwater facilities and waterways. Most sediment control practices function by either filtering sediment from runoff or by reducing flow velocity which allows sediment to settle out of runoff.

Appropriate sediment control practices must be selected to address specific site and adjacent property conditions to ensure effective operation throughout the construction phase of the project. Refer to 4.2.4.2 for typical sediment control practices.

§401.6.C of the WMO requires that sediment control practices intercept all stormwater runoff prior to discharging offsite. The following sediment control practices are required depending on the size of the disturbed area:

- When the disturbed area is less than 1-acre, the area must be protected by a silt fence or an equivalent practice approved by the District.

- When the disturbed area is greater than or equal to 1-acre, the area must be protected by a silt fence and a sediment basin or an equivalent practice approved by the District. The sediment basin must be sized to intercept the 2-year storm event with a 24-hour duration from the tributary area and be located at the lowest point of disturbance.
Additionally, the following items must be considered and incorporated into the project to comply with the temporary sediment control requirements of the WMO:

- All stormwater facilities draining the project area must be protected with an appropriate sediment control practice (§401.6.D).

- A stabilized construction entrance/exit must be provided and any soil reaching a public or private roadway must be removed immediately and be transported to a controlled sediment disposal area (§401.6.E).

- Construction dewatering operations must be designed and operated such that water discharged from a project will comply with the requirements set forth by the State of Illinois (§401.6.G).
4.2.4 Typical Erosion and Sediment Control Practices

This section of the TGM includes commonly used soil erosion and sediment control practices. Additional details, design criteria, and specifications for erosion and sediment control practices are provided in the IUM.

4.2.4.1 Typical Erosion Control Practices

Typical erosion control practices are summarized in Table 4.1.

<table>
<thead>
<tr>
<th>Erosion Control Strategy</th>
<th>Erosion Control Practice</th>
</tr>
</thead>
</table>
| Soil Stabilization | - **Vegetation, Seeding**
Used to establish temporary or permanent vegetative cover, enhances soil permeability, and filters sediment and other pollutants.
- **Manufactured Products**
Erosion control blankets, mulches, soil binders, turf reinforcement mats are used to provide immediate stabilization of slopes and channels before, during, and after the establishment of vegetation. These products retain soil moisture, provide an insulating layer, prevent seed washout, control undesirable species (weeds), and protect seeds from wildlife consumption. |
| Wind and Dust | - **Street Sweeping, Irrigation, Stone**
Used to prevent blowing and movement of dust, minimize health hazards, and improve traffic safety. |
| Stormwater Conveyance Channels | - **Channels, Drainage Swales**
Used to redirect erosive flows or convey clean/sediment laden water along a stabilized path away from areas that have not been stabilized. This practice is not suitable as sediment control practice and should be stabilized prior to use. |
| Velocity Dissipation | - **Rock Apron, Concrete Rubble, Gabions**
Used to slow erosive velocities of concentrated flows at the outlet of a drainage system. Appropriate for outlets carrying continuous or short intense flows, outlets to sediment basins, and locations where lined channels discharge to unlined channels or natural waterways. |
4.2.4.2 **Typical Sediment Control Practices**

Typical sediment control practices are summarized in Table 4.2.

<table>
<thead>
<tr>
<th>Sediment Control Strategy</th>
<th>Sediment Control Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter Control</td>
<td>• Silt Fence, Rolled Barriers, Vegetated Buffer</td>
</tr>
<tr>
<td></td>
<td>Used to contain sediment within the project site or protect against upstream sources from discharging sediment to the site. These practices prevent the discharge of sediment by filtering and dissipating the energy of sediment-laden runoff.</td>
</tr>
<tr>
<td>Inlet Control</td>
<td>• Inlet Filters, Above Grade Inlet Filters</td>
</tr>
<tr>
<td></td>
<td>Used to filter sediment-laden runoff prior to discharging into a storm sewer system. It is important to consider the type of storm structure, sediment loading, and flow velocity when selecting an appropriate practice.</td>
</tr>
<tr>
<td></td>
<td>Appropriate when the tributary area is less than 1-acre.</td>
</tr>
<tr>
<td>Entrance/Exit Control</td>
<td>• Stabilized Construction Entrance/Exit, Tire Wash Station</td>
</tr>
<tr>
<td></td>
<td>Used to prevent tracking sediment offsite from construction entrance and exit points.</td>
</tr>
<tr>
<td>Sedimentation Control</td>
<td>• Sediment Trap, Sediment Basin</td>
</tr>
<tr>
<td></td>
<td>Used to temporarily detain sediment-laden runoff to allow sediment to settle out prior to discharge. These practices may incorporate flocculants to enhance sediment removal. It is important to consider sediment loading for proper sizing and detention time. These practices should be sized to accommodate both the active settling process (live storage) and the accumulated sediment (dead storage). Sediment loading can be estimated using the Revised Universal Soil Loss Equation (RUSLE).</td>
</tr>
<tr>
<td></td>
<td>Sediment traps may be used when the tributary area is less than 5-acres.</td>
</tr>
<tr>
<td></td>
<td>Sediment basins must be used when the tributary area is greater than or equal to 5-acres.</td>
</tr>
<tr>
<td>Instream Sediment Control</td>
<td>• Silt Curtain, Cofferdam</td>
</tr>
<tr>
<td></td>
<td>Used to contain sediment when work occurs in or near waterways and prevent sediment loading of surface waters. All necessary permits (USACE, FEMA, IEPA, Section 401 and Section 404 permits, etc.) must be obtained prior to installation.</td>
</tr>
<tr>
<td>Dewatering Operation Control</td>
<td>• Filtration Systems, Pipe Socks, Dewatering Tank, Horizontal Wells</td>
</tr>
<tr>
<td></td>
<td>Used to filter sediment-laden groundwater prior to discharge from an excavated area. These controls ensure safe working conditions and proper removal of contaminants.</td>
</tr>
</tbody>
</table>
4.2.4.3 **Typical Erosion Control Practices by Project Feature**

Applicable soil erosion and sediment control practices will vary depending on the type and location of the project; however, certain types of practices are frequently used for various projects.

Typical erosion and sediment control practices by project feature are summarized in Table 4.3.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Erosion and Sediment Control Practices</th>
</tr>
</thead>
</table>
| **General Project** | • Stabilized Construction Entrance/Exit
 | • Silt Fence
 | • Erosion Control Blanket
 | • Inlet Basket
 | • Temporary Sediment Trap
 | • Concrete Washout
 | • Soil Stockpile Perimeter Control
 | • Dewatering Operation |
| **Stormwater Management Facility** | • Double-Row Silt Fence
 | • Velocity Dissipation Measure
 | • Sedimentation Basin |
| **Flood Protection Areas** | • Double-Row Silt Fence
 | • Velocity Dissipation Measure
 | • Soil Stockpile must be located outside FPA with Perimeter Control
 | • Cofferdam / Silt Curtain |
4.3 PERMANENT EROSION CONTROL REQUIREMENTS

Permanent erosion control refers to permanent stabilization where soil is not susceptible to erosion due to rainfall, stormwater runoff, and wind. This occurs when soil disturbing activities are completed and permanent vegetation is established.

The following items must be incorporated into the project to comply with the permanent erosion control requirements of the WMO:

- Permanent stabilization must be initiated within seven (7) days following the completion of soil disturbing activities (§402.1).

- All temporary soil erosion and sediment control practices must be maintained until permanent stabilization practices are achieved by either (§402.2):
 - A perennial vegetative cover that is uniformly established (e.g., evenly distributed, without large bare areas) with a density of 70% on all unpaved areas and areas not covered by permanent structures; or
 - Installation of riprap, gabions, or other non-vegetative practices.

- All temporary erosion and sediment control practices must be maintained until permanent stabilization is achieved and then removed within 30 days (§402.3).

In general, permanent stabilization using seeding often takes weeks (or months) to become established, especially during times of low rainfall or during colder months of the year. Therefore, it is important to schedule an appropriate timeline for permanent stabilization in order to prevent extended inspections and maintenance of temporary erosion and sediment control practices. Where the project is permanently stabilized, temporary erosion and sediment control practices may be removed and routine inspections are no longer required.
4.4 EROSION AND SEDIMENT CONTROL EXAMPLE

EXAMPLE 1

Determine the minimum required volume of a sediment basin for a 10-acre tributary area with a CN of 91. The sediment basin must be sized to intercept the 2-year storm event with a 24-hour duration.

Step 1. Calculate the potential maximum retention after runoff begins using Equation 5.4:

\[
S = \frac{1000}{CN} - 10
\]

\[
= \frac{1000}{91} - 10
\]

\[
= 0.99 \text{ inch}
\]

Step 2. Calculate the runoff volume from the tributary area that must be stored within the sediment basin using Equation 5.3. The rainfall depth of the 2-year storm event with a 24-hour duration is 3.34 inches (refer to Table 5.17):

\[
V_R = \frac{(P-0.2S)^2}{(P+0.8S)} \left(A \left(\frac{1}{12 \text{ft}} \right) \right)
\]

\[
= \frac{(3.34 \text{ inch} - 0.2(0.99 \text{ inch}))^2}{(3.34 \text{ inch} + 0.8(0.99 \text{ inch}))} \left(10 \text{ ac} \left(\frac{1}{12 \text{ft}} \right) \right)
\]

\[
= 1.99 \text{ ac-ft}
\]

Answer: The sediment basin must provide a minimum volume of 1.99 ac-ft. Note that additional volume may be required when the sediment loading and detention time is considered.
ARTICLE 4 REFERENCES

Environmental Protection Agency. *Developing a Stormwater Pollution Prevention Plan (SWPPP).* epa.gov/npdes/developing-stormwater-pollution-prevention-plan-swppp

Illinois Environmental Protection Agency. *General Storm Water Permit for Construction Site Activities (ILR10).* www2.illinois.gov/epa/topics/forms/water-permits/storm-water/Pages/general-permits.aspx

Illinois Environmental Protection Agency. *Storm Water Notices of Intent (NOI) Information for Construction and Industrial Activities.* www2.illinois.gov/epa/topics/forms/water-permits/storm-water/Pages/noi.aspx

ARTICLE 4 REVISION TABLE

<table>
<thead>
<tr>
<th>No.</th>
<th>Revision Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Original TGM</td>
<td>5/1/2014</td>
</tr>
<tr>
<td>1</td>
<td>Update examples, forms, and Schedule R information</td>
<td>8/1/2015</td>
</tr>
<tr>
<td>2</td>
<td>Rewrite, revision table</td>
<td>5/26/2020</td>
</tr>
</tbody>
</table>