

Metropolitan Water Reclamation District of Greater Chicago

MONITORING AND RESEARCH DEPARTMENT

REPORT NO. 09-59

BIOMONITORING REPORT 2009

CHRONIC WHOLE EFFLUENT TOXICITY TEST RESULTS FOR THE HANOVER PARK WATER RECLAMATION PLANT, HANOVER PARK, ILLINOIS,

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT NUMBER IL0036137, JULY 2009

SEPTEMBER 2009

Metropolitan Water Reclamation District of Greater Chicago

100 EAST ERIE STREET

CHICAGO, ILLINOIS 60611-3154

312.751.5190

Barbara J. McGowan

Cynthia M. Santos Debra Shore

Louis Kollias, P.E., BCEE Director of Monitoring and Research

louis.kollias@mwrd.org

September 9, 2009

Ms. Catherine Siders **Environmental Specialist** Compliance Assurance Section - 19 Illinois Environmental Protection Agency 1021 North Grand Avenue Springfield, IL 62794-9276

Dear Ms. Siders:

Subject:

Biomonitoring Report for 2009 – Chronic Whole Effluent Toxicity Test Results for the Hanover Park Water Reclamation Plant, Hanover Park, Illinois, National Pollutant Discharge Elimination System Permit

Number IL0036137, July 2009

The subject Biomonitoring Report is submitted in compliance with the National Pollutant Discharge Elimination System Permit Number IL0036137, Special Condition 11.

The subject report includes copies of all bench sheets, chain-of-custody forms, sample receipt and preparation forms, hard copies of computer generated statistical analyses, control charts, and a certification of accuracy statement.

If you have any questions concerning this report, please contact Dr. Geeta Rijal, Microbiologist IV at (708) 588-4224.

Very truly yours,

Louis Kollias Director Monitoring and Research

LK:TCG:GR:cm

Enclosures

cc w/encl.: Jamjun/Gronski/Grabis/Granato

Lazicki/O'Connor/Rijal/Glymph

cc: Cohen (Transmittal letter and report title page)

Metropolitan Water	Reclamation District of C	Greater Chicago
100 East Erie Street	Chicago, IL 60611-2803	(312) 751-5600
BIO	MONITORING REPORT	
	2009	
CHRONIC WHOLF	EFFLUENT TOXICITY T	FST RESULTS
	ARK WATER RECLAMAT	
	NOVER PARK, ILLINOIS	I O T LANT
	, , , , , , , , , , , , , , , , , , , ,	
NATIONAL POLLUTA	NT DISCHARGE ELIMIN	ATION SYSTEM
PERMIT N	NUMBER IL0036137, JULY	2009
Monitoring and Dagoarch Dan	artmont	
Monitoring and Research Dep Louis Kollias, Director	ai tiiitiit	SEPTEMBER 2009
Louis Komas, Director		SEI TEMBER 2009

TABLE OF CONTENTS

		Page
LIST OF TAB	LES	iii
ACKNOWLE	DGMENTS	iv
DISCLAIMER	8	iv
HANOVER I	WHOLE EFFLUENT TOXICITY TEST RESULTS FOR THE PARK WATER RECLAMATION PLANT, HANOVER PARK, ATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM MBER IL0036137, JULY 2009	1
Summa	ary	1
Sample	e Information	1
Whole	Effluent Toxicity Tests	1
Analys	ts	3
Results		3
CERTIFICAT	ION OF ACCURACY	6
APPENDICES	S	
AI	Summary of Chronic Whole Effluent Toxicity Results <i>Pimephales</i> promelas CETIS Test Summary and Comparison Report	AI-1
AII	Summary of Chronic Whole Effluent Toxicity Results Ceriodaphnia dubia CETIS Test Summary and Comparison Report	AII-1
BI	Raw Data for <i>Pimephales promelas</i> Whole Effluent Toxicity Test Conducted on Hanover Park Water Reclamation Plant Final Effluent Collected July 20-25, 2009	BI-1
BII	Raw Data for <i>Ceriodaphnia dubia</i> Whole Effluent Toxicity Test Conducted on Hanover Park Water Reclamation Plant Final Effluent Collected July 20-25, 2009	BII-1
CI	Chain-of-Custody For Whole Effluent Toxicity Tests Conducted On Hanover Park Water Reclamation Plant Final Effluent Collected July 20-25, 2009	CI-1

TABLE OF CONTENTS (Continued)

		Page
DI	Quality Assurance for the <i>Pimephales promelas</i> Whole Effluent Toxicity Test: Raw Data and Statistical Calculations for the Concurrent Reference Toxicant Test, Control Charts, and Culture Data	DI-1
DII	Quality Assurance for the <i>Ceriodaphnia dubia</i> Whole Effluent Toxicity Test: Raw Data and Statistical Calculations for the Concurrent Reference Toxicant Test, Control Charts, and Culture Data	DII-1

LIST OF TABLES

Table No.		<u>Page</u>
1	Sample Collection Information	2
2	Chronic Pimephales promelas Test Results	4
3	Chronic Ceriodaphnia dubia Test Results	5

ACKNOWLEDGMENTS

Mrs. Barbara Sanders is acknowledged for typing this report.

DISCLAIMER

Mention of proprietary equipment and chemicals in this report does not constitute endorsement by the Metropolitan Water Reclamation District of Greater Chicago.

CHRONIC WHOLE EFFLUENT TOXICITY TEST RESULTS FOR THE HANOVER PARK WATER RECLAMATION PLANT, HANOVER PARK, ILLINOIS NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM PERMIT NUMBER IL0036137, JULY 2009

Summary

The chronic toxicity test with *Pimephales promelas* (*P. promelas*) (7-day, static, renewal), was conducted on samples of Hanover Park Water Reclamation Plant (WRP) final effluent collected July 20-25, 2009. The results indicated that the tests were valid. No toxic effect on *P. promelas* larval survival or growth was observed. Results of the quality control chronic toxicity tests with *P. promelas* using the reference toxicant sodium chloride (NaC1) fell within control chart limits prescribed as acceptable by the United States Environmental Protection Agency (USEPA).

The chronic toxicity test with *Ceriodaphnia dubia* (*C. dubia*) (7-day, static, renewal) was conducted on samples of the Hanover Park WRP final effluent collected July 20-25, 2009. The results indicated that the tests were valid. No toxic effect on *C. dubia* survival or reproduction was observed. Results of quality control chronic toxicity tests with *C. dubia* using the reference toxicant NaC1 fell within limits prescribed as acceptable by the USEPA

Sample Information

Tests were performed using 24-hour composite samples of Hanover Park WRP final effluent collected on July 20 through July 25, 2009 for the chronic toxicity tests. The individual grab samples were stored on site at $0.1-6^{\circ}$ C in a refrigerator. These samples were received in the laboratory within 4 hours of the final grab sample collection. Sample temperatures at the time of receipt were below 6°C. Samples were stored in the laboratory at $4 \pm 1^{\circ}$ C. Sample collection information is shown in Table 1.

Whole Effluent Toxicity Tests

The chronic toxicity tests with *P. promelas* and *C. dubia* were conducted on the Hanover Park WRP effluent samples collected July 20 through July 25, 2009. Chronic Whole Effluent Toxicity (WET) test methods and procedures were followed in accordance with *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, EPA 821/R-02/013, Fourth Edition, October 2002. *P. promelas* were exposed to 12.5, 25, 50, 75, and 100 percent concentration of final effluent for seven days. *C. dubia* were exposed to the same concentrations of effluent for seven days.

TABLE 1: SAMPLE COLLECTION INFORMATION

Effluent Collection Point:	Hanover Park Water Reclamation Plant Effluent Discharge
Effluent Collection Method:	Three 24-hour composite samples. Five 2 1/2 gallon grab samples collected over a 24-hour period were combined to make each 24-hour composite sample. The individual grab samples were collected at 6-hour intervals.
Effluent Collection Times and Dates:	
First Sample Set	0600 July 20, 2009 1200 July 20, 2009 1800 July 20, 2009 2400 July 20, 2009 0600 July 21, 2009
Second Sample Set	0600 July 22, 2009 *1540 July 22, 2009 1800 July 22, 2009 2400 July 22, 2009 0600 July 23, 2009
Third Sample Set	0600 July 24, 2009 1200 July 24, 2009 1800 July 24, 2009 2400 July 24, 2009 0600 July 25, 2009

^{*}Due to a scheduled shut-down there was no flow to outfall 007. The sample was collected after the flow was restored.

The chronic fathead minnow test (*P. promelas*) was set up on 07/22/09 and completed on 07/29/09. The chronic *C. dubia* test was set up on 07/22/09 and completed on 07/29/09. Hard synthetic water with selenium (HSW) was used as control and dilution water for both test species. The laboratory controls met USEPA test acceptability criteria for both test species. Statistical analyses were performed using the CETISTM Software program version 1.7.0 (Tidepool Scientific Software, California).

Concurrent reference toxicant tests (RTT) using sodium chloride (NaCl) were conducted, and the control charts for the *P. promelas* and *C. dubia* chronic RTT were prepared.

Analysts

WET tests were conducted by G. V. Billett (Laboratory Technician II) and James Kaehn (Laboratory Technician I). Auralene Glymph (Microbiologist III) entered the raw data in an Excel and CETISTM program. Auralene Glymph and Geeta Rijal (Microbiologist IV) prepared this report.

Results

Results of the chronic P. promelas WET test are shown in <u>Table 2</u>. The P. promelas test results indicated a valid test. No toxic effect on P. promelas larval survival or growth was observed. The HSW control water met the test acceptability criteria (>80% survival) for the P. promelas test. Results of the quality control chronic toxicity test with P. promelas using the RTT fell within limits prescribed as acceptable by the USEPA, i.e. within ± 2 standard deviations from the mean.

Results of the chronic *C. dubia* WET test are shown in <u>Table 3</u>. The *C. dubia* test results indicated a valid test. No toxic effect on *C. dubia* survival or reproduction was observed. The HSW control water met the test acceptability criteria (>80% survival) for the *C. dubia* test. Results of the quality control, chronic toxicity test with *C. dubia* using the RTT fell within limits prescribed as acceptable by USEPA, i.e. within + 2 standard deviations from the mean.

The WET test results indicated the absence of chronic toxicity to *P. promelas* and *C. dubia*. Tabulated summaries of the *P. promelas* and *C. dubia* WET tests are presented in Appendices AI and AII, respectively. Raw data for the *P. promelas* and *C. dubia* WET tests are presented in Appendices BI and BII, respectively. Chain-of-Custody documentation is provided in Appendix CI. Raw data, statistical calculations, culture data, and control charts for the *P. promelas* and *C. dubia* concurrent RTT are provided in Appendices DI and DII, respectively.

TABLE 2: CHRONIC PIMEPHALES PROMELAS TEST RESULTS

Chronic Test Parameters	Results
NOEC ¹ Value (Survival)	100%
NOEC Value (Growth)	100%
IC ₂₅ (Growth)	>100%
7-Day Survival Rate (Control) ²	>95%
Mean Dry Weight (Control) ³ <i>P. promelas</i> (Growth)	1.18 mg $(\alpha=0.05)$
Minimum Significant Difference (MSD) ⁴ <i>P. promelas</i> (Growth)	17.7
Toxicity Observed	No
Valid Test	Yes
Concurrent Reference Toxicant Test in Control	Yes

¹No observed effect concentration.

²Results within test acceptability criteria (80% - NL) limits.

³Results within test acceptability criteria (0.25 - NL) limits.

⁴Results within test acceptability criteria (12 - 30%) limits.

TABLE 3: CHRONIC CERIODAPHNIA DUBIA TEST RESULTS

Chronic Test Parameters	Results	
NOEC ¹ Value (Survival)	100%	
NOEC Value (Reproduction)	100%	
IC ₂₅ (Reproduction)	>100%	
7-Day Survival Rate (Control) ²	100%	
7-Day Mean Reproduction (Control) ³	31.4	
Minimum Significant Difference (MSD) ⁴ <i>C. dubia</i> (Reproduction)	18.7 (α =0.05)	
Toxicity Observed	No	
Valid Test	Yes	
Concurrent Reference Toxicant Test in Control	Yes	

¹No observed effect concentration.

²Results within test acceptability criteria (80% - NL) limits.

³Results within test acceptability criteria (15 - NL) limits.

⁴Results within test acceptability criteria (12 - 30%) limits.

CERTIFICATION OF ACCURACY

I certify under penalty of law that this document and all appendices were prepared under my supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering data, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations 40 C.F.R. 122.22 (d).

Date	Louis Kollias
	Director
	Monitoring and Research

If you have any questions concerning this report, please contact Dr. Geeta Rijal, Microbiologist IV, at 708-588-4224.

APPENDIX AI

SUMMARY OF CHRONIC WHOLE EFFLUENT TOXICITY RESULTS $PIMEPHALES\ PROMELAS$ CETIS TEST SUMMARY AND COMPARISON REPORT

CETIS Summary Report

Report Date:

18 Aug-09 08:50 (p 1 of 2)

Test Code:

12-4437-7691/4A2BB25B

Larval Fish 7-	d Survival and	Growth Tes	st						MWR	D of Greate	er Chicag
Batch ID: Start Date:	09-1102-4977 22 Jul-09		t Type: tocol:	Growth-Surviva EPA/821/R-02-				Analyst: Diluent: H	ard Synthetic	Water	
Ending Date:	29 Jul-09	Spe	cies:	Pimephalés pro	melas			Brine: N	ot Applicable		
Duration:	7d 0h	Sou	irce:	Environmental	Consult & Te	est		Age: 4	8h		
Sample ID:	14-7567-2707	Cod	te:	57F4FA83				Client:			
Sample Date:	21 Jul-09	Mat	erial:	POTW Effluent				Project:			
Receive Date:	21 Jul-09	Sou	irce:	Hanover Park V	VRP						
Sample Age:	24h	Sta	tion:								
Comments:	Hanover Park	Chronic Fish	Test or	r samples collec	ted July 20-	25, 2009.					
Comparison S	Summary										
Analysis ID	Endpoint		NOEL		TOEL	PMSD	TU	Method			
17-5708-3935			100	>100	N/A	7.46%	1		lany-One Rani		
01-1499-8662	Mean Dry Wei	ght-mg	100	>100	N/A	17.7%	1	Dunnet	t's Multiple Co	mparison To	est
Point Estimat	e Summary										
Analysis ID	Endpoint		Level		95% LCL	95% UCL		Method			
21-1100-1271	Mean Dry Wei	ght-mg	IC25	>100	N/A	N/A	<1	Linear I	nterpolation (I	CPIN)	
Test Acceptab	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Overla	p Decision		
17-5708-3935	7d Survival Ra			ol Resp	0.95	0.8 - NL		Yes		thin Limits	
01-1499-8662		-		ol Resp	1.18	0.25 - NL		Yes		thin Limits	
21-1100-1271				ol Resp	1.18	0.25 - NL		Yes		thin Limits	
	Mean Dry Wei	ght-mg	PMSD)	0.177	0.12 - 0.3		Yes	Result W	thin Limits	•
7d Survival R Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	4	0.95	0.913	0.987	0.8	1	0.0183	0.1	10.5%	0.0%
12.5		4	1	1	1	1	1	0.0100	0	0.0%	-5.26%
25_		4	0.975		-0.994	0.9	1	0.00913		5.13%	-2.63%
50		4	1	1	1	1	1	0	0	0.0%	-5.26%
75		4	1	1	1	1	1	0	0	0.0%	-5.26%
100		4	1	1	1	1	1	0	0	0.0%	-5.26%
Mean Dry Wei	ight-mg Summa	ary								. ;4	
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	4	1.18	1.13	1.23	1.06	1.32	0.0251	0.137	11.7%	0.0%
		4	1.33	1.28	1.38	1.13	1.43	0.025	0.137	10.3%	-13.29
		4	1.24	1.19	1.29	1.12	1.44	0.0251	0.138	11.1%	-5.529
					4.4	4 22	1 12	0.00935	5 0.0512	3.72%	47.00
25		4	1.38	1.36	1.4	1.32	1.43				-17.09
12.5 25 50 75	,		1.38 1.29	1.36	1:31	1:21	1:33			4.3%	-17.0% -9.77%

000-015-170-3

CETIS™ v1.7.0

Analyst:____ QA:_

CETIS Summary Report

Report Date: Test Code: 18 Aug-09 08;50 (p 2 of 2) 12-4437-7691/4A2BB25B

Larval Fish 7-d Survival and Growth Test	MWRD of Greater Chicago
	mitte of oroater ormeage

7d Surviva	I Rate Detail					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Lab Water	1	1	1	0.8	
12.5		1	1	1	1	
25		1	1	1	0.9	
50		1	1	1	1	
75		1	1	1 .	1	
100		1	1	1	1	

Mean Dry Weight-mg Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Lab Water	1.32	1.27	1.06	1.06	
12.5		1.38	1.13	1.43	1.39	
25		1.2	1.21	1.44	1.12	
50		1.35	1.43	1.32	1.41	
75		1.33	1.21	1.31	1.32	
100		1.28	1.43	1.42	1.3	

000-015-170-3

CETIS™ v1.7.0

Analyst:_____ QA:____

Report Date:

18 Aug-09 08:50 (p 1 of 4) 12-4437-7691/4A2BB25B

Test Code: 12-4437-7691/4A2BB25B

Larval Fish 7-d Survival and Growth Test

MWRD of Greater Chicago

Analysis-ID: 17-5708-3935 - Endpoint: 7d Survival-Rate- - CETIS Version: CETISV1.7.0

Analysis-ID: Analyzed:	17-5708-3935 18 Aug-09 8:49	Endpoint: Analysis:	7d Survival-Rate Nonparametric-Control vs Treatments	CETIS Ver		CETISv1.7.0 Yes	
Batch ID:	09-1102-4977	Test Type:	Growth-Survival (7d)	Analyst:			
Start Date:	22 Jul-09	Protocol:	EPA/821/R-02-013 (2002)	Diluent:	Hard	Synthetic Water	
Ending Date:	29 Jul-09	Species:	Pimephales promelas	Brine:	Not A	Applicable	
Duration:	7d Oh	Source:	Environmental Consult & Test	Age:	48h		
Sample ID:	14-7567-2707	Code:	57F4FA83	Client:			
Sample Date:	21 Jul-09	Material:	POTW Effluent	Project:			
Receive Date:	: 21 Jul-09 ··	Source:	Hanover Park WRP -				
Sample Age	24h :-	Station:					

Sample Age: - 24h - Station:

Comments: Hanover Park Chronic Fish Test on samples collected July 20-25, 2009.

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Corrected)		C > T	Not Run	100	>100	N/A	1	7.46%

Steel Many-One Rank Test

Control	vs	Conc-%	Test Stat	Critical	Ties	P-Value	Decision(5%)
Lab Water		12.5	20	10	1	0.9520	Non-Significant Effect
		25	18.5	10	1	0.8730	Non-Significant Effect
		50	20	10		0.9520	Non-Significant Effect
		75	20	10	1	0.9520	Non-Significant Effect
		100	20	10	1	0.9520	Non-Significant Effect

Test Acceptability

Attribute	Test Stat	TAC Limits	Overlap	Decision
Control Resp	0.95	0.8 - NL	Yes	Result Within Limits

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(5%)
Between	0.02075619	0.004151239	5	0.834	0.5430	Non-Significant Effect
Error	0.08962759	0.004979311	18			
Total	0.1103838	0.00913055	23			

ANOVA Assumptions

Attribute	Test	Test Stat	Critical	P-Value	Decision(5%)
Variances	Mod Levene Equality of Variance	0.834	2.77	0.5430	Equal Variances
Distribution	Shapiro-Wilk Normality	0.644		0.0000	Non-normal Distribution

7d Survival Rate Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	4	. 0.95	0.912	0.988	0.8	1	0.0186	0.1	10.5%	0.0%
12.5		4	1	1	1	1	1	0 -	0	0.0%	-5.26%
25		4	0.975	0.956	0.994	0.9	1	0.00928	0.05	5.13%	-2.63%
50		4	1	1	1	1	1	0	0	0.0%	-5.26%
75		4	1	1	1	1	1	0	0	0.0%	-5.26%
100		4	1	1	1	1	1	0	0	0.0%	-5.26%

Angular (Corrected) Transformed Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	4	1.34	1.28	1.39	1.11	1.41	0.0283	0.152	11.4%	0.0%
12.5		4	1.41	1.41	1.41	1.41	1.41	0	0	0.0%	-5.71%
25 .		4	1.37	1.34	1.4	1.25	1.41	0.0151 .	0.0815	5.94%	-2.66%
50		4	1.41	1.41	1.41	1.41	1.41	0	0	0.0%	-5.71%
75		4	1.41	1.41	1.41	1.41	1.41	0	0	0.0%	-5.71%
100		4	1.41	1.41	1.41	1.41	1.41	0	0	0.0%	-5.71%

000-015-170-3

CETIS™ v1.7.0

Analyst: QA:

Report Date:

18 Aug-09 08:50 (p 2 of 4)

Test Code:

12-4437-7691/4A2BB25B

Larval Fish 7-d Survival and Growth Test

MWRD of Greater Chicago

Analysis ID: Analyzed:

17-5708-3935 18 Aug-09 8:49 Endpoint: 7d Survival Rate

Analysis: Nonparametric-Control vs Treatments **CETIS Version:**

CETISv1.7.0

Official Results: Yes

7d-Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Lab Water	1	1	1	0.8
12.5		1	1	1	1
25		1	1	1	0.9
50		1	1	1	1
75		1	1	1	1
100		1	1	1	1

Graphics

100

000-015-170-3

Report Date: Test Code: 18 Aug-09 08:50 (p 3 of 4) 12-4437-7691/4A2BB25B

							Test	Code:	12	-4437-769	1/4A2BB2
Larval Fish 7-	d Survival and (Growth Tes	st						MWR	D of Great	er Chicag
Analysis ID:	01-1499-8662	End	lpoint:	Mean Dry Weig	ht-ma		CET	IS Version:	CETISv1	.7.0	
Analyzed:	18 Aug-09 8:48			Parametric-Con		tments	Offic	ial Results	: Yes		
Batch ID:	09-1102-4977	Tes	t Type:	Growth-Survival	I (7d)		Anal	yst:			
Start Date:	22 Jul-09	Pro	tocol:	EPA/821/R-02-0	013 (2002)		Dilu	ent: Har	d Synthetic	Water	
Ending Date:	29 Jul-09	Spe	cies:	Pimephales pro	melas		Brin	e: Not	Applicable		
Duration:	7d 0h	Sou	ırce:	Environmental (Consult & Te	est	Age	48h			
Sample ID:	14-7567-2707	Cod	de:	57F4FA83			Clie	nt:			
Sample Date:	21 Jul-09	Mat	erial:	POTW Effluent			Proj	ect:			
Receive Date:	21 Jul-09	Sou	ırce:	Hanover Park V	VRP						
Sample Age:	24h	Sta	tion:								
Comments:	Hanover Park C	Chronic Fish	Test on	samples collec	ted July 20-	25, 2009.					
Data Transfor	m	Zeta	Alt Hy	p Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed	1		C <> T	Not Run	No.	100	>100	N/A	1	17.7%)
Dunnett's Mu	Itiple Compariso	on Test									
Control	vs Conc-%		Test S	tat Critical	MSD	P-Value	Decision	(5%)			
Lab Water	12.5		2.05	2.76	0.208	0.1890	Non-Sign	ificant Effec	t		
	25		0.861	2.76	0.208	0.8560	Non-Sign	ificant Effec	t		
	50		2.65	2.76	0.208	0.0624	Non-Sign	ificant Effec	t :t		
	75		1.52	2.76	0.208	0.4330	Non-Sign	ificant Effec	t t		
	100		2.38	2.76	0.208	0.1040	Non-Sign	ificant Effec	t		
Test Acceptat	oility										
Attribute	Test Stat	TAC Lim	its	Overlap	Decision						
Control Resp	1.18	0.25 - NL		Yes	Result Wit	thin Limits					
PMSD	0.177	0.12 - 0.3		Yes	Result Wit	thin Limits					
ANOVA Table											
Source	Sum Squ	ares	Mean :	Square	DF	F Stat	P-Value	Decision	1(5%)		
Between	0.1146722	2	0.0229	3445	5	2.01	0.1250	Non-Sign	ificant Effect	t	
Error	0.2050553	3	0.0113	9196	18						
Total	0.3197276	3	0.0343	2641	23						
ANOVA Assur	mptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett E	quality of V	'ariance	4.99	15.1	0.4170	Equal Va				
Distribution	Shapiro-V	Wilk Norma	lity	0.983		0.9410	Normal D	Distribution			
Mean Dry We	ight-mg Summa	ry									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	4	1.18	1.13	1.23	1.06	1.32	0.0255	0.137	11.7%	0.0%
12.5		4	1.33	1.28	1.38	1.13	1.43	0.0254	0.137	10.3%	-13.2%
25		4	1.24	1.19	1.29	1.12	1.44	0.0256	0.138	11.1%	-5.52%
50		4	1.38	1.36	1.4	1.32	1.43	0.00951	0.0512	3.72%	-17.0%
75		4	1.29	1.27	1.31	1.21	1.33	0.0103	0.0556	4.3%	-9.77%
		i	4.00	4.00	4.00	4.00	4.40	0.0440	0.0705	E 700/	15 20/

CETIS™ v1.7.0

1.28

1.43

1.39

1.33

1.36

Analyst:_____ QA:____

5.78%

-15.3%

0.0146

0.0785

Report Date: Test Code:

18 Aug-09 08:50 (p 4 of 4) 12-4437-7691/4A2BB25B

Larval Fish 7-d Survival and Growth Test

MWRD of Greater Chicago

Analysis ID: Analyzed:

0

01-1499-8662 18 Aug-09 8:48

Control Type

Lab Water

Rep 1

1.32

Endpoint: Mean Dry Weight-mg

Rep 3

1.06

Analysis: Parametric-Control vs Treatments

Rep 4

1.06

CETIS Version:

CETISv1.7.0

Mean Dry Weight-mg Detail		

Rep 2

1.27

Official Negation 100	Official	Results:	Yes
-----------------------	----------	----------	-----

official	Results:	res	

Report Date:

18 Aug-09 08:50 (p 1 of 2)

Test Code:

12-4437-7691/4A2BB25B

									res	t Code:		12-4437-	7 09 1/4AZBBZ5
Larval F	ish 7-d	Survival and	Growth Tes	t								MWRD of G	reater Chicago
Analysis	ID:	21-1100-1271	End	point:	Mean Dry Weig	aht-ma		(to	CET	TIS Versi	on:	CETISv1.7.0	
Analyzed	d:	18 Aug-09 8:48		lysis:	Linear Interpola)		Offi	cial Res	ults:	Yes	
Batch ID	F = -	09-1102-4977	Tes	Type	Growth-Surviva	il (7d)	ender weie		- Ana	lýst:		**************************************	
Start Dat	te:	22 Jul-09		ocol:	EPA/821/R-02-							Synthetic Water	
Ending I	Date:	29 Jul-09	Spe	cies:	Pimephales pro	omelas			Brin	ne:	Not A	Applicable	
Duration	n:	7d 0h	Sou	rce:	Environmental	Consult & T	est		Age		48h		
Sample	ID:	14-7567-2707	Cod	e:	57F4FA83				Clie	nt:			
Sample	Date:	21 Jul-09	Mat	erial:	POTW Effluent				Pro	ject:			
Receive	Date:	21 Jul-09	Sou	rce:	Hanover Park V	WRP							
Sample	Age:	24h	Stat	ion:									
Commer	nts:	Hanover Park (Chronic Fish	Test o	n-samples collec	ted July 20-	-25, 20	09.					
Linear Ir	iterpot	ation Options											
X Transf	orm	Y Transform	n See	d	Resamples	Exp 95%	CL	Method					
Log(X+1))	Linear	579	51	200	Yes		Two-Po	int Inter	oolation			
Test Acc	eptabi	lity											
Attribute		Test Stat	TAC Limit	s	Overlap	Decision							
Control R	Resp	1.18	0.25 - NL		Yes	Result Wi	thin Lin	nits					
Point Es	timate	s						i i					
Level	Conc-	% 95% LCL	95% UCL	TU	95% LCL	95% UCL							
IC25	>100	N/A	N/A	<1	N/A	N/A							
Mean Dr	y Weig	ht-mg Summa	ry			Cal	lculate	d Variat	te				
Conc-%	Co	ontrol Type	Count	Mean	Min	Max	Std E	err S	td Dev	CV%		Diff%	
0	La	b Water	4	1.18	1.06	1.32	0.025	51 0	.137	11.7%	,	0.0%	
12.5			4	1.33	1.13	1.43	0.025	5 0	.137	10.3%	1	-13.2%	
25			4	1.24	1.12	1.44	0.025	51 0	.138	11.1%	,	-5.52%	
50			4	1.38	1.32	1.43	0.009	935 0	.0512	3.72%		-17.0%	
75			4	1.29	1.21	1.33	0.010	02	.0556	4.3%		-9.77%	
100			4	1.36	1.28	1.43	0.014	3 0	.0785	5.78%		-15.3%	
Mean Dr	y Weig	ht-mg Detail											
Conc-%	-	ontrol Type	Rep 1	Rep 2		Rep 4						10	
0	La	b Water	1.32	1.27	1.06	1.06							
12.5			1.38	1.13	1.43	1.39							
25			1.2	1.21	1.44	1.12							
50			1.35	1.43	1.32	1.41							

000-015-170-3

75

100

1.33

1.28

1.21

1.43

1.31

1.42

1.32

1.3

CETIS™ v1.7.0

Analyst:_

Report Date: -- 18 Aug-09 08:50 (p 2 of 2)

Test Code:

12-4437-7691/4A2BB25B

Larval Fish 7-d Survival and Growth Test

MWRD of Greater Chicago

Analysis ID: Analyzed:

21-1100-1271

18 Aug-09 8:48

Endpoint: Mean Dry Weight-mg

CETIS Version: CETISv1.7.0

Graphics

Analysis: Linear Interpolation (ICPIN)

Official Results: Yes

Report Date:

20 Aug-09 09:36 (p 1 of 4) 12-4437-7691/4A2BB25B

Larval Fish 7-d Survival and Growth Test

Test Code: 12-4437-7691/4A2BB25B

MWRD of Greater Chicago

Batch ID: 09-1102-4977

77 Test Type: Growth-Survival (7d)

Analyst: Diluent:

Start Date: 22 Jul-09 Ending Date: 29 Jul-09 Protocol: EPA/821/R-02-013 (2002)

Diluent: Hard Synthetic Water Brine: Not Applicable

Duration:

7d 0h

Species: Pimephales promelas
Source: Environmental Consult & Test

Age: 48

Comments:

Hanover Park Chronic Fish Test on samples collected July 20-25, 2009.

Parameter	Acceptability

Parameter	Min	Max	Acceptability Limits	Overlap	Decision
Total Residual Chlorine-mg/L	0	0	0 - 0	Yes	Results Within Limits
Final Dissolved Oxygen-mg/L	4.34	5.85	4 - NL	Yes	Results Within Limits
Initial Dissolved Oxygen-mg/L	7.04	8.95	4 - NL	Yes	Results Within Limits
Total Ammonia (N)-mg/L	0.18	0.38	NL - 5	Yes	Results Within Limits
Final pH-Units	6.68	7.41	6 - 9	Yes	Results Within Limits
Initial pH-Units	7.27	7.9	6 - 9	Yes	Results Within Limits
Temperature-°C	24.6	25.8	24 - 26	Yes	Results Within Limits

Alkalinity (CaCO3)-mg/L

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Lab Water	3	113	112	113	112	114	0.192	1.15	1.02%	0
100		3	113	112	114	110	116	0.509	3.06	2.7%	0
Overall		6	113			110	116				0 (0%)

Total Residual Chlorine-mg/L-

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Lab Water	3	0	0	0	0	0	0	0		0
Overall		3	0			0	0				0 (0%)

Conductivity-µmhos

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Coun
0	Lab Water	8	0.573	0.572	0.575 -	0.567	0.581	0.000839	0.00504	0.88%	θ
12.5		8	0.604	0.602	0.606	0.594	0.61	0.000821	0.00493	0.82%	0
25		8	0.639	0.637	0.641	0.63	0.644	0.000745	0.00447	0.7%	0
50		8	0.717	0.714	0.719	0.701	0.725	0.00138	0.00828	1.16%	0
75		8	0.795	0.791	0.799	0.776	0.808	0.00195	0.0117	1.47%	0
100		8	0.871	0.865	0.876	0.84	0.887	0.00287	0.0172	1.98%	0
Overall		48	0.7			0.567	0.887				0 (0%)

Final Dissolved Oxygen-mg/L

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Lab Water	7	5.19	5.01	5.37	4.34	5.85	0.0875	0.525	10.1%	0
12.5		7	5.25	5.11	5.39	4.67	5.72	0.0702	0.421	8.02%	0
25		7	4.8	4.74	4.86	4.45	5.03	0.0313	0.188	3.91%	0
50		7	5.22	5.12	5.31	4.7	5.54	0.0476	0.285	5.47%	0
75		7	5.28	5.16	5.39	4.7	5.7	0.0555	0.333	6.31%	0
100		7	5.29	5.19	5.39	4.79	5.62	0.0493	0.296	5.59%	0
Overall		42	5.17			4.34	5.85				0 (0%)

Initial Dissolved Oxygen-mg/L

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Lab Water	7	7.37	7.28	7.46	7.08	7.71	0.0453	0.272	3.69%	0
12.5		7	7.57	7.46	7.68	7.04	8.01	0.0527	0.316	4.18%	0
25		7	7.72	7.63	7.82	7.19	8.03	0.0462	0.277	3.59%	0
50		7	8.06	7.98	8.13	7.69	8.41	0.0382	0.229	2.84%	0
75		7	8.39	8.3	8.48	7.96	8.72	0.0427	0.256	3.05%	0
100	N.	7	8.74	8.65	8.83	8.21	8.95	0.0431	0.259	2.96%	0
Overall		42	7.98			7.04	8.95				0 (0%)

000-015-170-3

CETIS™ v1.7.0

Analyst:_____ QA:____

20 Aug-09 09:36 (p 2 of 4) 12-4437-7691/4A2BB25B

Larval Fish	7-d Survival and	Growth To	est						MWRD of Greater Chicago				
Hardness (CaCO3)-mg/L												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Lab Water	3	167	165	168	164	172	0.77	4.62	2.77%	0		
100		3	217	214	221	208	228	1.68	10.1	4.63%	0		
Overall		6	192			164	228				0 (0%)		
Total Amm	onia (N)-mg/L							-					
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Lab Water	3	0.257	0.22	0.293	0.18	0.38	0.018	0.108	42.0%	0		
Overall		3	0.257			0.18	0.38				0 (0%)		
Final pH-U	nits												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Lab Water	7	7.2	7.12	7.29	6.68	7.41	0.0402	0.241	3.35%	0		
12.5		7	7.35	7.33	7.37	7.25	7.39	0.00822	0.0493	0.67%	0		
25		7	7.32	7.31	7:33	7.29	7.37	0.00435	0.0261	0.36%	0		
50		7	7.36	7.35	7.37	7.32	7.4	0.00478	0.0287	0.39%	0		
75		7	7.35	7.34	7.36	7.29	7.39	0.00604	0.0363	0.49%	0		
100		7	7.34	7.33	7.36	7.28	7.4	0.00686	0.0412	0.56%	0		
Overall		42	7.32			6.68	7.41				0 (0%)		
Initial pH-U	nits				: :								
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Lab Water	7	7.79	7.77	7.81	7.69	7.84	0.00825	0.0495	0.64%	0		
12.5		7	7.84	7.82	7.85	7.79	7.9	0.00686	0.0412	0.53%	0		
25		7	7.74	7.73	7.75	7.69	7.78	0.00539	0.0324	0.42%	0		
50		7	7.55	7.55	7.56	7.51	7.59	0.0045	0.027	0.36%	0		
75		7	7.44	7.42	7.45	7.38	7.47	0.00592	0.0355	0.48%	0		
100		7	7.34	7.32	7.35	7.27	7.38	0.00592	0.0355	0.48%	0		
Overall		42	7.62			7.27	7.9				0 (0%)		
Temperatu	re-°C												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Lab Water	8	25.5	25.4	25.6	24.7	25.8	0.0587	0.352	1.38%	0		
12.5		8	25.5	25.4	25.6	24.7	25.7	0.0559	0.336	1.32%	0		
25		8	25.5	25.3	25.6	24.7	25.8	0.057	0.342	1.34%	0		
50		8	25.5	25.3	25.6	24.6	25.7	0.0591	0.354	1.39%	0		
75		8	25.5	25.4	25.6	24.6	25.8	0.0636	0.382	1.5%	0		
100		8	25.5	25.4	25.6	24.7	25.8	0.0562	0.337	1.32%	0		
Overall		48	25.5			24.6	25.8				0 (0%)		

000-015-170-3

CETIS™ v1.7.0

Analyst:_____ QA:____

20 Aug-09 09:36 (p 3 of 4) 12-4437-7691/4A2BB25B

Larval Fish	7-d Survival and	Growth '	Test						MWRD of Greater Chicago
Alkalinity (C	aCO3)-mg/L								
Conc-%	Control Type	1	2	3					
0	Lab Water	112	114	112					
12.5									
25									
50									
75									
100		110	116	114					
Total Resid	ual Chlorine-mg/	/L							
Conc-%	Control Type	1	2	3					
0	Lab Water	0	0	0					
12.5									
25									
50									
75									
100									
Conductivit	y-µmhos	***************************************							
Conc-%	Control Type	1	2	3	4	5	6	7	8
0	Lab Water	0.571	0.567	0.57	0.571	0.577	0.581	0.57	0.579
12.5		0.602	0.594	0.602	0.604	0.607	0.61	0.608	0.605
25		0.639	0.63	0.637	0.639	0.644	0.638	0.644	0.641
50		0.707	0.701	0.718	0.717	0.723	0.725	0.721	0.72
75		0.781	0.776	0.792	0.794	0.802	0.808	0.802	0.806
100		0.851	0.84	0.867	0.87	0.882	0.887	0.881	0.886
Final Dissol	ved Oxygen-mg/	'L				457			
Conc-%	Control Type	1	2	3	4	5	6	. 7	
0-	Lab Water	4.77	5.21	4.34	5.52	5.03	5.85	5.62	
12.5		4.67	4.98	4.83	5.72	5.36	5.63	5.57	
25		4.45	4.86	4.67	5.03	4.91	4.81	4.86	
50		4.7	5.31	5.03	5.54	5.14	5.38	5.42	
75		5.46	5.7	4.7	5.46	4.99	5.29	5.34	
100		4.79	5.51	5.19	5.62	5.03	5.42	5.44	
Initial Disso	ved Oxygen-mg	/L		*					
Conc-%	Control Type	1	2	3	4	5	6	7	
0	Lab Water	7.18	7.11	7.62	7.27	7.63	7.71	7.08	
12.5		8.01	7.04	7.55	7.45	7.83	7.7	7.41	
25		8.03	7.19	7.75	7.72	7.93	7.86	7.58	
50		8.41	7.69	8.08	8.06	8.21	8.07	7.88	
75		8.72	7.96	8.64	8.32	8.49	8.34	8.25	
100		8.85	8.21	8.95	8.64	8.86	8.94	8.74	
Hardness (C	aCO3)-mg/L								
Conc-%	Control Type	1	2	3					
0	Lab Water	164	164	172	-				
12.5									
25									
50									
75									
100		208	216	228					

000-015-170-3	00	0-0	15-	17	0-3
---------------	----	-----	-----	----	-----

CETIS™ v1.7.0

Analyst:____ QA:___

20 Aug-09 09:36 (p 4 of 4) 12-4437-7691/4A2BB25B

Larval Fish	7-d Survival and	Growth '	Test							MWRD of Gr	eater Chicago
Total Amm	onia (N)-mg/L										
Conc-%	Control Type	1	2	3							
0	Lab Water	0.21	0.38	0.18							
12.5											
25											
50											
75											
100											
Final pH-U	nits										
Conc-%	Control Type	1	2	3	4	5	6	7			
0	Lab Water	6.68	7.23	7.22	7.25	7.29	7.35	7.41			
12.5		7.25	7.33	7.36	7.39	7.35	7.38	7.39			
25		7.3	7.32	7.37	7.33	7.31	7.29	7.31			
50		7.32	7.37	7.4	7.38	7.33	7.36	7.34			
75		7.39	7.39	7.36	7.35	7.29	7.34	7.32			
100		7.32	7.34	7.39	7.4	7.28	7.35	7.33			
Initial pH-U	nits			1		100					
Conc-%	Control Type	1	2	3	4	5	6	7			
0	Lab Water	7.8	7.83	7.78	7.84	7.69	7.81	7.79			
12.5		7.8	7.84	7.79	7.9	7.87	7.85	7.8			
25		7.76	7.75	7.72	7.78	7.76	7.69	7.71			
50		7.59	7.57	7.57	7.55	7.53	7.51	7.56			
75		7.46	7.46	7.47	7.42	7.4	7.38	7.46			
100		7.33	7.34	7.38	7.33	7.27	7.37	7.33			
Temperatur	re-°C										
Conc-%	Control Type	1	2	3	4	5	6	7	8		
0	Lab Water	24.7	25.7	25.6	25.4	25.5	25.7	25.7	25.8		
12.5		24.7	25.7	25.5	25.6	25.7	25.6	25.6	25.7	-	
25		24.7	25.3	25.6	25.5	25.7	25.5	25.6	25.8	100	
50		24.6	25.5	25.6	25.5	25.6	25.6	25.6	25.7		
75		24.6	25.7	25.6	25.4	25.6	25.8	25.7	25.6		
100		24.7	25.5	25.5	25.4	25.8	25.6	25.6	25.7		

000-015-170-3

CETIS™ v1.7.0

Analyst: ____ QA:____

APPENDIX AII

SUMMARY OF CHRONIC WHOLE EFFLUENT TOXICITY RESULTS $CERIODAPHNIA\ DUBIA$ CETIS TEST SUMMARY AND COMPARISON REPORT

Report Date:

18 Aug-09 06:44 (p 1 of 1)

Test Code:

13-2360-3083/4EE4948B_

Daphnid 7-	d Survival and Re	production	Test						MWR	D of Great	ter Chicag
Batch ID:	18-8218-5685	Tes	st Type:	Reproduction-S	Survival (7d)		Ana	lyst:			
Start Date:	22 Jul-09	Pro	otocol:	EPA/821/R-02-	013 (2002)		Dilu	ent: Har	d Synthetic	Water	
Ending Dat	te: 29 Jul-09	Spe	ecies:	Ceriodaphnia d	ubia		Brin	ne: Not	Applicable		
Duration:	7d Oh	So	urce:	MWRD WET L	ab In-house	Culture	Age	: <24	h		
Sample ID:	01-7746-4099	Co	de:	A93E323			Clie	nt:			
Sample Da	ite: 21 Jul-09	Ma	terial:	POTW Effluent			Proj	ject:			
Receive Da	ate: 21 Jul-09	So	urce:	Hanover Park V	VRP						
Sample Ag	je: 24h	Sta	ition:								
Comments	: Hanover Park	Chronic C.	dubia test	t on samples co	llected July	20-25, 2009).				
Compariso	on Summary										
Analysis ID) Endpoint	12	NOEL	LOEL	TOEL	PMSD	TU	Method			
18-8172-84	99 7d Survival Ra	te	100	>100	N/A	N/A	1	Fisher Ex	act/Bonferro	ni-Holm Te	est
15-0917-42	97 Reproduction		100	>100	N/A	18.7%	1	Steel Mar	ny-One Rank	k Test	
Point Estin	nate Summary					\$1/2					
Analysis ID) Endpoint		Level	Conc-%	95% LCL	95% UCL	TU	Method			
00-5927-52	34 Reproduction		IC25	>100-	N/A	-N/A	<1	Linear Int	erpolation (le	CPIN)	-
Test Accep	otability										
Analysis ID	Endpoint		Attribu	ute	Test Stat	TAC Limi	its	Overlap	Decision		
18-8172-84	99 7d Survival Ra	te	Contro	l Resp	1	0.8 - NL		Yes	Result Wi	thin Limits	
00-5927-52	34 Reproduction		Contro	l Resp	31.4	15 - NL		Yes	Result Wi	thin Limits	
15-0917-42	97 Reproduction			l Resp	31.4	15 - NL		Yes		thin Limits	
15-0917-42	97 Reproduction		PMSD		0.187	0.13 - 0.47	7	Yes	Result Wi	thin Limits	
7d Surviva	I Rate Summary										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL		Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	10	1-	1	1	1	1	0	0	0.0%	0.0%
12.5		10	1	1	1	1	1	0	0	0.0%	0.0%
25		10	1	1	1	1	1	0	0	0.0%	0.0%
50		10	1	1 .	1	1	1	0	0	0.0%	0.0%
75		10	1	1	1	1	1	0	0	0.0%	0.0%
100		10	1	1	1	1	1	0	0	0.0%	0.0%
Reproduct	ion Summary										
Conc-%	Control Type	Count	Mean	95% LCL			Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	10	31.4	30.1	32.7	24	36	0.634	3.47	11.1%	0.0%
12.5		10 -	35.3	34.6	36	33	39.	0.345	1.89	5.35%	-12.4%
25		10	34.5	33.5	35.5	30	38	0.496	2.72	7.88%	-9.87%
50		10	33.2	32.1	34.3	30	40	0.522	2.86	8.61%	-5.73%
75		10	26.8	23.3	30.3	0	33	1.73	9.5	35.4%	14.6%
100		10	25.4	23.3	27.5	14	35	1.04	5.7	22.4%	19.1%

000-015-170-3

CETIS™ v1.7.0

Analyst:_ QA:

Report Date:

18 Aug-09 06:43 (p 1 of 2) 13-2360-3083/4EE4948B

est Code: 13-2360-30

							Test	Code:	13	3-2360-308	3/4EE4948
Daphnid 7-d S	Survival and Rep	oroductio	on Test						MWR	D of Great	er Chicago
Analysis ID:	15-0917-4297	E	ndpoint:	Reproduction			CET	S Version:	CETISv1	.7.0	
Analyzed:	12 Aug-09 9:00	Α	nalysis:	Nonparametric-	Control vs T	reatments	Offic	ial Results	: Yes		
Batch ID:	18-8218-5685	Т	est Type:	Reproduction-S	urvival (7d)		Anal	yst:			
Start Date:	22 Jul-09	P	rotocol:	EPA/821/R-02-	013 (2002)		Dilue	ent: Har	d Synthetic	Water	
Ending Date:	29 Jul-09	S	pecies:	Ceriodaphnia di	ubia		Brin	e: Not	Applicable		
Duration:	7d 0h	S	ource:	MWRD WET L	ab In-house	Culture	Age:	<24	h		
Comments:	Hanover Park C	Chronic C	. dubia test	on samples co	llected July	20-25, 2009	9.				
Data Transfor		Zeta	Alt Hy	p Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed	i		C <> T	Not Run		100	>100	N/A	1	18.7%	
Steel Many-O	ne Rank Test										3
Control	vs Conc-%		Test St	tat Critical	Ties	P-Value	Decision	(5%)			
Lab Water	12.5*		69	71	3	0.0281	Significan	t Effect			
	25		77	71	5	0.1310	Non-Signi	ficant Effec	t		
	50		91	71	4	0.7340	Non-Signi	ficant Effec	t		
	75		77.5	71	3	0.1420	Non-Signi	ficant Effec	t		
	100		72	71	1	0.0523	Non-Signi	ficant Effec	t		
Test Acceptat	oility										
Attribute	Test Stat	TAC Li	mits	Overlap	Decision						
Control Resp	31.4	15 - NL		Yes	Result Wit	thin Limits	** -1 1				
PMSD	0.187	0.13 - 0).47	Yes	Result Wit	thin Limits					
ANOVA Table											
					DF	F Stat		Decision	(5%)		
Source	Sum Squa	ares	Mean S	Square	Di	r Stat	P-Value				
		ares	Mean \$ 169.36		5	6.61	0.0001	Significar	t Effect		
Between	Sum Squa	ares						Significar	t Effect		
Between Error	Sum Squa 846.8	ares	169.36	74	5			Significar	t Effect	7 1	
Between Error Total	Sum Squa 846.8 1384.6 2231.4	ares	169.36 25.640	74	5 54			Significar	t Effect		
Between Error Total ANOVA Assur	Sum Squa 846.8 1384.6 2231.4	ares	169.36 25.640	74	5 54				t Effect		
Source Between Error Total ANOVA Assur Attribute Variances	Sum Squa 846.8 1384.6 2231.4 mptions		169.36 25.640	74	5 54 59	6.61	0.0001	(1%)	t Effect		
Between Error Total ANOVA Assur Attribute	Sum Squa 846.8 1384.6 2231.4 mptions	quality of	169.36 25.640 195.00	74 07 Test Stat	5 54 59 Critical	6.61	0.0001 Decision	(1%)			
Between Error Total ANOVA Assur Attribute Variances Distribution	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of	169.36 25.640 195.00	74 07 Test Stat 31.2	5 54 59 Critical	P-Value 0.0000	0.0001 Decision	(1%) /ariances		5	*
Between Error Total ANOVA Assur Attribute Variances Distribution Reproduction	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of	169.36 25.640 195.00	74 07 Test Stat 31.2	5 54 59 Critical	P-Value 0.0000	0.0001 Decision	(1%) /ariances		CV%	Diff%
Between Error Total ANOVA Assur Attribute Variances Distribution Reproduction Conc-%	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of Vilk Norn	169.36 25.640 195.00 Variance	74 07 Test Stat 31.2 0.755	5 54 59 Critical 15.1	P-Value 0.0000 0.0000	Decisional Unequal Non-norm	(1%) /ariances al Distributi	on	CV% 11.1%	Diff% 0.0%
Between Error Total ANOVA Assur Attribute Variances Distribution Reproduction Conc-%	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of Vilk Norm Count	169.36 25.640 195.00 Variance nality	74 07 Test Stat 31.2 0.755	5 54 59 Critical 15.1	P-Value 0.0000 0.0000	Decisions Unequal \ Non-norm	(1%) /ariances al Distributi	on Std Dev		
Between Error Total ANOVA Assur Attribute Variances Distribution Reproduction Conc-% 0 12.5	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of Vilk Norm	169.36 25.640 195.00 Variance nality Mean 31.4	74 07 Test Stat 31.2 0.755 95% LCL 30.1	5 54 59 Critical 15.1 95% UCL 32.7	P-Value 0.0000 0.0000 Min 24	Decisions Unequal \ Non-norm Max 36	(1%) /ariances al Distributi Std Err 0.644	on Std Dev 3.47	11.1%	0.0%
Between Error Total ANOVA Assur Attribute Variances Distribution Reproduction Conc-% 0 12.5	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of Vilk Norm	169.36 25.640 195.00 Variance nality Mean 31.4 35.3	74 07 Test Stat 31.2 0.755 95% LCL 30.1 34.6	5 54 59 Critical 15.1 95% UCL 32.7 36	P-Value 0.0000 0.0000 Min 24 33	Decision Unequal \ Non-norm	(1%) /ariances ial Distributi Std Err 0.644 0.351	on Std Dev 3.47 1.89	11.1% 5.35%	0.0%
Between Error Total ANOVA Assur Attribute Variances	Sum Squa 846.8 1384.6 2231.4 mptions Test Bartlett E Shapiro-V	quality of Vilk Norm	169.36 25.640 195.00 Variance nality Mean 31.4 35.3 34.5	74 07 Test Stat 31.2 0.755 95% LCL 30.1 34.6 33.5	5 54 59 Critical 15.1 95% UCL 32.7 36 35.5	P-Value 0.0000 0.0000 Min 24 33 30	Decision Unequal \ Non-norm	(1%) /ariances ial Distributi Std Err 0.644 0.351 0.505	Std Dev 3.47 1.89 2.72	11.1% 5.35% 7.88%	0.0% -12.4% -9.87%

000-015-170-3

CETIS™ v1.7.0

Analyst:____ QA:___

Report Date: Test Code:

18 Aug-09 06:43 (p 2 of 2) 13-2360-3083/4EE4948B

Daphnid 7-d Survival and Reproduction Test

MWRD of Greater Chicago

Analysis ID: Analyzed:

15-0917-4297 12 Aug-09 9:00 Endpoint: Reproduction

Analysis:

Nonparametric-Control vs Treatments

CETIS Version:

CETISv1.7.0

Official Results: Yes

000-015-170-3

CETIS™ v1.7.0

Analyst:_ QA:

Report Date:

18 Aug-09 06:43 (p 1 of 1)

MWRD of Greater Chicago

Test Code:

13-2360-3083/4EE4948B

Daphnid 7-d Surviva	and Reproduc	ction Test
---------------------	--------------	------------

Analysis ID: Analyzed:

00-5927-5234 12 Aug-09 9:00 Endpoint: Reproduction Linear Interpolation (ICPIN) Analysis:

CETISv1.7.0 **CETIS Version:**

Official Results: Yes

Batch ID:

18-8218-5685

Protocol:

Test Type: Reproduction-Survival (7d) EPA/821/R-02-013 (2002)

Analyst: Diluent:

Hard Synthetic Water

Start Date: Ending Date: 29 Jul-09

22 Jul-09

Species:

Ceriodaphnia dubia

Brine:

Not Applicable

Duration:

7d 0h

Source:

MWRD WET Lab In-house Culture

Age:

<24h

Comments:

Hanover Park Chronic C. dubia test on samples collected July 20-25, 2009.

Linear Interpolation Options

X Transform	Y Transform	See
Log(X+1)	Linear	5795

d Resamples 57951 200

Exp 95% CL Method

Test Acceptability

Attribute Control Resp Test Stat TAC Limits 15 - NL 31.4

Decision Overlap

Yes

Result Within Limits

Two-Point Interpolation

Point Estimates

Level

IC25

Conc-% >100

95% LCL 95% UCL TU <1

Yes

95% LCL 95% UCL

N/A	N/A
,	

Reproduc	tion Summary		Calculated Variate							
Conc-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Lab Water	10	31.4	24	36	0.634	3.47	11.1%	0.0%	
12.5		10	35.3	33	39	0.345	1.89	5.35%	-12.4%	
25		10	34.5	30	38	0.496	2.72	7.88%	-9.87%	
50		10	33.2	30	40	0.522	2.86	8.61%	-5.73%	
75		10	26.8	0	33	1.73	9.5	35.4%	14.6%	
100		10	25.4	14	35	1.04	5.7	22.4%	19.1%	

Reproduction Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Lab Water	31	32	30	33	32	24	36	36	29	31
12.5		33	34	39	33	34	36	37	36	36	35
25		33	32	33	33	30	36	35	38	38	37
50		32	40	35	34	31	30	32	34	33	31
75		30	0	29	29	29	29	29	30	33	30
100		14	35	21	28	31	26	25	26	26	22

Graphics

CETIS™ v1.7.0

Analyst: QA:

Report Date:

18 Aug-09 06:43 (p 1 of 1) 13-2360-3083/4EE4948B

Test Code:

				1000	000.
Daphnid 7-d S	Survival and Reprod	duction Test			MWRD of Greater Chicago
Analysis ID:	18-8172-8499	Endpoint:	7d Survival Rate	CETIS Ver	rsion: CETISv1.7.0
Analyzed:	12 Aug-09 8:58	Analysis:	STP 2x2 Contingency Tables	Official Re	esults: Yes
Batch ID:	18-8218-5685	Test Type:	Reproduction-Survival (7d)	Analyst:	
Start Date:	22 Jul-09	Protocol:	EPA/821/R-02-013 (2002)	Diluent:	Hard Synthetic Water
Ending Date:	29 Jul-09	Species:	Ceriodaphnia dubia	Brine:	Not Applicable
Duration:	7d 0h	Source:	MWRD WET Lab In-house Culture	Age:	<24h
Comments:	Hanover Park Chro	nic C. dubia tes	st on samples collected July 20-25, 2009.		

Data Transform	Zeta	Alt Hyp	Monte Carlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed		C > T	Not Run	100	>100	N/A	1	N/A	

Fisher Exact/Bonferroni-Holm Test

Control	VS	Conc-%	Test Stat	P-Value	Decision(0.05)	
Lab Water		12.5	1	1	Non-Significant Effect	
		25	1	1	Non-Significant Effect	
		50	1	1	Non-Significant Effect	
		75	1	1	Non-Significant Effect	
		100	1	1	Non-Significant Effect	

Test Acceptability

Attribute	Test Stat	TAC Limits	Overlap	Decision
Control Resp	1	0.8 - NL	Yes	Result Within Limits

Data Summary

Control Type	No-Resp	Resp	Total	
Lab Water	10	0	10	
	10	0	10	
	10	0	10	
	10	0	10	
	10	0	10	
	10	0	10	
		Lab Water 10 10 10 10 10	10 0 10 0 10 0 10 0	Lab Water 10 0 10 10 10 10 10 10 10 10 10 10 10 1

Graphics

CETIS™ v1.7.0

Analyst:	QA:

18 Aug-09 06:43 (p 1 of 4) 13-2360-3083/4EE4948B

Daphnid 7-d Survival and Reproduction Test MWRD of Greater Chicago Test Type: Reproduction-Survival (7d) Analyst: 18-8218-5685 Batch ID: Hard Synthetic Water EPA/821/R-02-013 (2002) Diluent: 22 Jul-09 Protocol: Start Date: Ceriodaphnia dubia Brine: Not Applicable 29 Jul-09 Species: **Ending Date:** MWRD WET Lab In-house Culture Age: -<24h 7d 0h Source: Duration: Hanover Park Chronic C. dubia test on samples collected July 20-25, 2009. Comments: Parameter Acceptability Acceptability Limits Overlap Decision Parameter Min Max Results Within Limits 0 0-0 Yes 0 Total Residual Chlorine-mg/L 8.62 4 - NL Yes Results Within Limits 7.24 Final Dissolved Oxygen-mg/L Results Within Limits 6.36 8.85 4 - NL Yes Initial Dissolved Oxygen-mg/L Results Within Limits 0.18 0.38 NI - 5 Yes Total Ammonia (N)-mg/L Results Within Limits 8.39 6-9 Yes 78 Final pH-Units Results Within Limits 7.26 8.06 6-9 Yes Initial pH-Units Results Within Limits Yes 24.7 25.3 24 - 26 Temperature-°C Total Residual Chlorine-mg/L Max CV% **QA** Count 95% LCL 95% UCL Min Std Err Std Dev Control Type Count Mean Conc-% 0 0 0 0 0 0 0 0 Lab Water 3 0 0 (0%) 0 0 0 3 Overall Final Dissolved Oxygen-mg/L Std Dev CV% **QA Count** 95% UCL Min Max Std Err Control Type Count Mean 95% LCL Conc-% 4.72% 7.24 8.25 0.0611 0.366 0 7.76 7.63 7.88 0 Lab Water 7 0.0577 0.346 4.34% 0 7.86 8.1 7.49 8.42 7 98 12.5 0.347 -4.29% 0 8.07 7.96 8.19 7.58 8.48 0.0578 7 25 -0.053 0.318 3.96% 0 7.52 8.38 7 8.02 7.92 8.13 50 4.26% 0 7.93 8.17 7.5 8.45 0.0572 0.343 7 8.05 75 0.0657 0.394 4.91% 0 7 8.04 7.91 8.17 7.45 8.62 100 0 (0%) 42 7.24 8.62 Overall 7.99 Initial Dissolved Oxygen-mg/L 95% LCL Std Err Std Dev CV% **QA** Count 95% UCL Min Max Control Type Count Mean Conc-% 7.74 0.0802 0.481 6.58% 0 7.31 7.14 7.47 6.36 Lab Water 7 0 4.65% 0 0.0568 0.341 7 7.33 7.21 7.44 7 7.79 12.5 4.39% 0 0.0546 0.327 7.56 7 1 7.9 7 7.45 7.34 25 7.23 0.0701 0.42 5.44% 0 7.59 7.88 8.22 7 7.74 50 6.63% 0 7.84 8.2 7.43 8.73 0.0886 0.532 7 8.02 75 0.0917 0.55 6.7% 0 7.54 8.85 8.21 8.03 8.4 100 0 (0%) 6.36 8.85 42 7.68 Overall Total Ammonia (N)-mg/L CV% **QA** Count Std Dev Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Conc-% 42.0% 0 0.108 0.38 0.018 0 Lab Water 3 0.257 0.22 0.293 0.18 0 (0%) 0.38 0.18 0.257 Overall 3 Final pH-Units CV% **QA Count** Std Err Std Dev 95% LCL 95% UCL Min Max Control Type Count Mean Conc-% 2.24% 0 0.03 0.18 8.05 7.99 8.12 7.8 8.39 Lab Water 0 8 8.38 0.0224 0.134 1.65% 0 7 8.08 8.17 12.5 8.12 0.021 0.126 1.55% 0 7 8.14 8.1 8.19 8 8.35 25 0 8.09 8.18 7.97 8.35 0.0229 0.138 1.69% 50 7 8.13 1.91% 0 0.0258 0 155 7.93 8.32 7 8.12 8.07 8.17 75 7.92 8.26 0.0238 0.143 1.76% 0 8.05 8.14 100 8.1 0 (0%) 42 8.11 7.8 8.39 Overall

CETIS™ v1.7.0

Analyst: QA:

50

75

100

Overall

8

8

8

48

25.1

25.1

25.1

25

25

25.1

25

Report Date:

18 Aug-09 06:43 (p 2 of 4)

Test Code:

13-2360-3083/4EE4948B

Daphnid 7-	d Survival and Re	productio		MWRD of Greater Chicago								
Initial pH-Units												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count	
0	Lab Water	7	7.91	7.86	7.96	7.75	8.06	0.0242	0.145	1.84%	0	
12.5		7	7.72	7.66	7.79	7.33	7.89	0.0313	0.188	2.43%	0	
25		7	7.72	7.7	7.73	7.64	7.79	0.00772	0.0463	0.6%	0	
50		7	7.57	7.55	7.59	7.48	7.63	0.00936	0.0562	0.74%	0	
75		7	7.45	7.43	7.46	7.38	7.51	0.00821	0.0493	0.66%	0	
100		7	7.36	7.35	7.38	7.26	7.42	0.00843	0.0506	0.69%	0	
Overall		42	7.62			7.26	8.06				0 (0%)	
Temperatu	re-°C											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count	
0	Lab Water	8	25.1	25	25.1	25	25.3	0.0172	0.103	0.41%	0	
12.5		8	25.1	25	25.2	24.9	25.3	0.0267	0.16	0.64%	0	
25		8	24.9	24.8	24.9	24.7	25,1	0.0259	0.155	0.62%	0	
											1742	

25.1

25.2

25.1

24.8

24.8

24.8

24.7

25.3

25.3

25.3

25.3

0.0236

0.0259

0.0252

0.141

0.155

0.151

0.57%

0.62%

0.6%

0

0

0

0 (0%)

CETIS™ v1.7.0

Analyst:_____ QA:____

Test Code:

Report Date: 18 Aug-09 06:44 (p 3 of 4) 13-2360-3083/4EE4948B

Daphnid 7-									
- aprilia r	d Survival and R	eproducti	on Test						MWRD of Greater Chicago
Total Resid	dual Chlorine-mg/	L							,
Conc-%	Control Type	1	2	3					
)	Lab Water	0	0	0					
2.5									
25									
50									
75									
100									
inal Disso	olved Oxygen-mg/	'L		Y W					**************************************
Conc-%	Control Type	1	2	3	4	5	6	7	
	Lāb Water	7.5	8.25	7.57	7.86	7.24	8.18	7.69	
2.5		7.73	8.42	7.83	8.16	7.49	8.37	7.85	
.5		7.76	8.44	7.93	8.31	7.58	8.48	8.02	
0		7.71	8.38	7.96	8.29	7.52	8.25	8.06	
75		7.68	8.19	8.02	8.45	7.5	8.29	8.22	
100		7.65	8.28	7.95	8.62	7.45	8.17	8.16	
	olved Oxygen-mg		0.20	7.00	0.02	7.45	0.17	0.10	
Conc-%	Control Type	1	2	3	4	5	6	7	
)	Lab Water	7.25	6.36	7.74	7.05	7.62	7.61	7.52	
12.5	200 110101	7.79	7	7.5	7.24	7.72	7.02	7.03	
25	5	7.73	7.16	7.73	7.35	7.9	7.19	7.1	
0		8.22	7.58	8.06	7.48				
5		8.73				8.22	7.36	7.23	
00			7.82 7.98	8.51	7.66	8.45	7.52	7.43	
	onia (N)-mg/L	8.71	7.90	8.85	8.01	8.75	7.64	7.54	
	onia (N)-ing/L								
onc-%	Control Type	1	2	3					
	Control Type	0.21	0.38	0.18					
)	Control Type Lab Water	0.21	0.38	0.18					
2.5									9 2
2.5									
2.5 25 60									
2.5 25 60 75									
2.5 5 60 75	Lab Water								
2.5 5 0 5 00 inal pH-Ur	Lab Water	0.21	0.38	0.18					
2.5 5 0 5 00 inal pH-Ur	Lab Water nits Control Type	0.21	0.38	0.18	4 7 8	5	6	7	
2.5 2.5 3.5 3.5 5.5 00 Final pH-Ur	Lab Water	0.21 1 7.97	2 8.01	3 8.11	7.8	8	8.39	8.1	
2.5 2.5 50 55 00 Final pH-Ur Conc-%	Lab Water nits Control Type	0.21 1 7.97 8.02	2 8.01 8.03	3 8.11 8.2	7.8 8	8 8.09	8.39 8.38	8.1 8.15	
2.5 55 60 55 00 Final pH-Ur Conc-% 2.5	Lab Water nits Control Type	0.21 1 7.97 8.02 8	2 8.01 8.03 8.03	3 8.11 8.2 8.25	7.8 8 8.07	8 8.09 8.12	8.39 8.38 8.35	8.1 8.15 8.19	
2.5 5 60 75 00 Final pH-Ur Conc-% 2.5	Lab Water nits Control Type	0.21 1 7.97 8.02 8 7.97	2 8.01 8.03 8.03 8	3 8.11 8.2 8.25 8.26	7.8 8 8.07 8.08	8 8.09 8.12 8.1	8.39 8.38 8.35 8.35	8.1 8.15 8.19 8.18	
2.5 50 75 00 Final pH-Ur Conc-% 2.5 50	Lab Water nits Control Type	0.21 1 7.97 8.02 8 7.97 7.94	2 8.01 8.03 8.03 8 7.93	3 8.11 8.2 8.25 8.26 8.28	7.8 8 8.07 8.08	8 8.09 8.12 8.1 8.08	8.39 8.38 8.35 8.35 8.32	8.15 8.19 8.18 8.2	
Conc-% 12.5 15.6 10.0 Conc-% 12.5 10.0 10	Lab Water nits Control Type Lab Water	0.21 1 7.97 8.02 8 7.97	2 8.01 8.03 8.03 8	3 8.11 8.2 8.25 8.26	7.8 8 8.07 8.08	8 8.09 8.12 8.1	8.39 8.38 8.35 8.35	8.1 8.15 8.19 8.18	
2.5 50 60 75 60 75 60 75 60 75 75 75 75 75 75 75 75 75 75 75 75 75	Lab Water nits Control Type Lab Water	0.21 7.97 8.02 8 7.97 7.94 7.92	2 8.01 8.03 8.03 8 7.93 7.94	3 8.11 8.2 8.25 8.26 8.28 8.26	7.8 8 8.07 8.08 8.08	8 8.09 8.12 8.1 8.08 8.01	8.39 8.38 8.35 8.35 8.32 8.25	8.1 8.15 8.19 8.18 8.2 8.19	
2.5 50 60 75 60 75 60 75 60 75 75 75 75 75 75 75 75 75 75 75 75 75	Lab Water nits Control Type Lab Water nits Control Type	1 7.97 8.02 8 7.97 7.94 7.92	2 8.01 8.03 8.03 8 7.93 7.94	3 8.11 8.2 8.25 8.26 8.28 8.26	7.8 8 8.07 8.08 8.08 8.1	8 8.09 8.12 8.1 8.08 8.01	8.39 8.38 8.35 8.35 8.32 8.25	8.1 8.15 8.19 8.18 8.2 8.19	
2.5 50 00 Final pH-Ur Conc-% 2.5 5 00 nitial pH-U	Lab Water nits Control Type Lab Water	0.21 7.97 8.02 8 7.97 7.94 7.92	2 8.01 8.03 8.03 8 7.93 7.94	3 8.11 8.2 8.25 8.26 8.28 8.26	7.8 8 8.07 8.08 8.08 8.1	8 8.09 8.12 8.1 8.08 8.01 5 7.92	8.39 8.38 8.35 8.35 8.32 8.25	8.1 8.15 8.19 8.18 8.2 8.19 7	
2.5 5 00 5 00 5 inal pH-Ur conc-% 2.5 5 00 nitial pH-U	Lab Water nits Control Type Lab Water nits Control Type	1 7.97 8.02 8 7.97 7.94 7.92 1 7.77 7.33	2 8.01 8.03 8.03 8 7.93 7.94 2 8.06 7.89	3 8.11 8.2 8.25 8.26 8.28 8.26 3 8.05 7.78	7.8 8 8.07 8.08 8.08 8.1 4 8.04 7.86	8 8.09 8.12 8.1 8.08 8.01 5 7.92 7.8	8.39 8.38 8.35 8.35 8.32 8.25	8.1 8.15 8.19 8.18 8.2 8.19 7 7.76 7.76	
2.5 5 00 inal pH-Ur conc-% 2.5 5 00 nitial pH-U	Lab Water nits Control Type Lab Water nits Control Type	1 7.97 8.02 8 7.97 7.94 7.92 1 7.77 7.33 7.73	2 8.01 8.03 8.03 8 7.93 7.94 2 8.06 7.89 7.79	3 8.11 8.2 8.25 8.26 8.28 8.26 3 8.05 7.78 7.71	7.8 8 8.07 8.08 8.08 8.1 4 8.04 7.86 7.75	8 8.09 8.12 8.1 8.08 8.01 5 7.92 7.8 7.7	8.39 8.38 8.35 8.35 8.32 8.25 6 7.75 7.71 7.64	8.1 8.15 8.19 8.18 8.2 8.19 7 7.76 7.77	
2.5 5 00 inal pH-Ur conc-% 2.5 5 00 initial pH-U conc-%	Lab Water nits Control Type Lab Water nits Control Type	1 7.97 8.02 8 7.97 7.94 7.92 1 7.77 7.33 7.73 7.59	2 8.01 8.03 8.03 8 7.93 7.94 2 8.06 7.89 7.79 7.63	3 8.11 8.2 8.25 8.26 8.28 8.26 3 8.05 7.78 7.71 7.57	7.8 8 8.07 8.08 8.08 8.1 4 8.04 7.86 7.75 7.59	8 8.09 8.12 8.1 8.08 8.01 5 7.92 7.8 7.7 7.5	8.39 8.38 8.35 8.35 8.32 8.25 6 7.75 7.71 7.64 7.48	8.1 8.15 8.19 8.18 8.2 8.19 7 7.76 7.76 7.71 7.61	
2.5 5 00 inal pH-Ur conc-% 2.5 5 00 initial pH-U conc-% 2.5 5	Lab Water nits Control Type Lab Water nits Control Type	1 7.97 8.02 8 7.97 7.94 7.92 1 7.77 7.33 7.73 7.59 7.46	2 8.01 8.03 8.03 8 7.93 7.94 2 8.06 7.89 7.79 7.63 7.51	3 8.11 8.2 8.25 8.26 8.28 8.26 3 8.05 7.78 7.71 7.57	7.8 8 8.07 8.08 8.08 8.1 4 8.04 7.86 7.75 7.59 7.49	8 8.09 8.12 8.1 8.08 8.01 5 7.92 7.8 7.7 7.5 7.38	8.39 8.38 8.35 8.35 8.32 8.25 6 7.75 7.71 7.64 7.48 7.4	8.1 8.15 8.19 8.18 8.2 8.19 7 7.76 7.77 7.71 7.61 7.41	
2.5 50 60 75 60 75 60 75 60 75 75 75 75 75 75 75 75 75 75 75 75 75	Lab Water nits Control Type Lab Water nits Control Type	1 7.97 8.02 8 7.97 7.94 7.92 1 7.77 7.33 7.73 7.59	2 8.01 8.03 8.03 8 7.93 7.94 2 8.06 7.89 7.79 7.63	3 8.11 8.2 8.25 8.26 8.28 8.26 3 8.05 7.78 7.71 7.57	7.8 8 8.07 8.08 8.08 8.1 4 8.04 7.86 7.75 7.59	8 8.09 8.12 8.1 8.08 8.01 5 7.92 7.8 7.7 7.5	8.39 8.38 8.35 8.35 8.32 8.25 6 7.75 7.71 7.64 7.48	8.1 8.15 8.19 8.18 8.2 8.19 7 7.76 7.76 7.71 7.61	

000-015-170-3

CETIS™ v1.7.0

Analyst:_____QA:___

CETIS Measurement Report

Report Date: Test Code: 18 Aug-09 06:44 (p 4 of 4) 13-2360-3083/4EE4948B

Daphnid 7-d Survival and Reproduction Test

MWRD of Greater Chicago

Temperature-°C																
Conc-%	Control Type	1		2		3		4		5		6	7	8		
0	Lab Water ···	25		25.3		25	***	25.1		25.1		25	 25.1	25		
12.5		24.9	_	25.3		25.2		25.1		25		25.1	 24.9	25.3		
25		25		25		24.7		24.7		25.1		24.8	24.8	25		
50		25		25.1		25.3		25.1		25		24.8	25	25.1		
75		25.1		25.3		25		25.2		25.1		24.8	25.2	25.2		
100		25		25.1		25		25.2		25		24.8	25	25.3		

000-015-170-3

CETIS™ v1.7.0

Analyst:_____ QA:____

APPENDIX BI

RAW DATA FOR *PIMEPHALES PROMELAS*WHOLE EFFLUENT TOXICITY TEST CONDUCTED ON HANOVER PARK WATER RECLAMATION PLANT FINAL EFFLUENT COLLECTED JULY 20-25, 2009

FATHEAD MINNOW-Pimephales promelas CHRON1C TOXICITY TEST DATA SHEET

MWRD Plant: HAUDVER PARK Sample type: Composte Final Effuent Analysts: G. V. BILLETT Beginning Test Date 7-22-09 Time 11:00 Am Sample Dates 7/20-7/21 1/22-7/23 7/24-7/25 Ending Test Date 7-29-09 Time 11:00 in Laboratory water (LW): MHSW/HSW WITH SELENIUM (circle one) Date approved 7-13-09

Species: Pimephales promelas Age 24-47. Source 10-17 Hatch Date 7/20/09

Incubator I.D. Hotpack Chamb Calibrated Thermometer#: S/N 8031998 est Chamber

% Conc.					ved Oxyger								Н			
	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
New 0	7, 18	7.11	7.62	7. 27	7.63	7.71 7.70	7.08		7.80	7.83	7.78	7.84	7.69	7.81	7.79	
12.5	8.01	7.04	7.55	7.45	7.83	7.70	7.41		7.80	7.84	7. 79	7.90	7.87	7.85	7.80	
25	8.03	7.19	7.75	7.72	7.93	7.86	7.58		7.76	7.75	7.72	7.78	7.76	7.67	7.71	
50	8.41	7.69	8.08	8.06	8.21	8.07	7.88		7.59	7.57	7.57	7.55	7.53	7.51	7.56	
75	8.72	7.96	8.64	8.32	8.49	8.34	8.25		7.46	7.46	7.47	7.42	7.40	7.38	7.46	
100	8.85	8.21	8.95	8.64	8.86	8.94	8.74		7.33	7.34	7.38	7.33	7.27	7.37	7.33	
old 0		4.77	5.21	4.34	5.52	5.03	5.85	5.62		6.68	7.23	Ŧ. 22	7. 25	7.29	7.35	7.41
12.5		4.67	4.98	4.83	5.72	5.36	5.63	5.57		7.25	7.33	7.36	7.39	7.35	7.38	7.39
25		4.45	4.86	4.67	5.03	4.91	4.81	4.86		7:30	7.32	7.37	7. 33	7.31	7. 29	7.31
50		4.70	5,31	5.03	5.54	5.14	5.38	5.42		7.32	7.37	7.40	7. 38	7.33	7.36	7.34
75		5.46	5.70	4.70	5.46	4.99	5.29	5.34		7,39	7.39	7.36	7.35	7.29	7-34	7.32
100				5.19										7.28	7.35	7.33
Time	10, Vm	12.45	10 3 32~	9,31,40	9.05 405	9183	9.05 155	11,44	101 30	123 pm	10 33	9:25:20	903 107	1 13	9:05 4.55	11 22
Initials	403.	GMB	gy.B.	SuB	Sun	ans	LUB.	Qm3	9m3	Jups.	GUB	GUB	Juns	Cuns	Quis3	CARS

Measure DO at the end of each 24 h exposure period in at least one test chamber at each test concentration and in the control. Measure Temperature at the end of each 24 h exposure period in at least one test chamber at each test concentration and in the control. Measure temperature in two test vessels at the end of the test to determine the temperature variation in the environmental chamber. Measure pH each day, at the end of each 24 h exposure period, in at least one test chamber at each test concentration and in the control.

Pimephales promelas CHRONIC TOXICITY TEST DATA SHEET

MWRD PLANT: HANOVEK PARK ANALYST: G.V. BILLETT ASSAY DATE: 7-22-09

% Conc.	Cup No.				Adult S	urvival							Temper	ature(°C)			
	110.			,			,	,					,				,
		0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
Control	7A	10	10	10	10	10	10	10	10	24.7				25.5			
LW	7B	10	10	10	10	10	10	10	10		25. 7		-		25.7		
	7C	10	10	10	10	10	10	10	10			25.6				25.7	
	,7D	10	9	9	9	9	8	8	8				25.4				25.8
	TIME	11: DO	11 30 Av	1.05	11.15	11 1	11, W	10150	10. W	2 7	8 m	7:55	81 Am	7:55	8,05	812	8:35
INI	TIAL	Quis	QnB	GMB	9m3	9mB	QUB.	ans	gm3	QMB .	CuB.	QUB	QUB.	ams	ans	ans	Jims

% Conc.	Cup No.				Adult S	urvival					An and a conservor con-		Temper	ature(°C)			
EFFLUEN	NT	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
12.5%	8A	10	10	10	10	10	10	10	10	24.7				25.7			
	8B	10	10	10	10	10	10	10	10		25.7				25.6		
	8C	10	10	10	10	10	10	10	10			25.5				25,6	
	8D	10	10	10	10	10	10	10	10		-		25.6				25.7
	TIME	11i An	11:30	1, bu	11120	11:00	11,900	10, 4	10, 10	2125	8120	7:55 m	81 gm	7. m	8: 05	81/8	81 m
INI	TIAL	gms	yns	GNB	QmB	GMB	Gus	QUB	em3	amo	aus.	Juns	QUB.	Cans	Gus	Gurz	mis

Comments:	

Pimephales promelas CHRONIC TOXICITY TEST DATA SHEET

MWRD PLANT: HANGYER PARK ANALYST: G.V. BILLETT ASSAY DATE: 7-22-09

% Conc.	Cup No.				Adult S	urvival				-			Temper	ature(°C)			
EFFLUE	NT	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
25%	9A	10	10	10	10	10	10	10	10	24.7				25.7			
	9B	10	10	10	10	10	10	10	10		25.3				25.5		
	9C	10	10	10	10	10	10	10	10			25.6				25.6	
	9D	10	10	10	10	10	10	10	9				25.5			ļ.,	25-8
	TIME	11.00	11 75	1:30	11 25	11:15	11:15	11 50	lian	2:25	8:20 8: An	7:55 Am	8 185 m	7:55	8:05	8'm	8:35
IN	ITIAL	Qm3	ams	Qur?	QueB	Uns	Jus	ans	om?	Qun	GUB	QmB	QUB.	gus	Qm3	Gunz	Quis

% Conc.	Cup No.				Adult S	urvival							Temper	ature(°C)						
EFFLUE	NT	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168			
50%	10A	10	10	10	10	10	10	10	10	24.6		1		25.6						
	10B	10	10	10	10	10	10	10	10		25.5				25.6					
	10C	10	10	10	10	10	10	10	10			25.6				25.6				
	10D	10	10	10	10	10	10	10	10				25.5		,	,	25.7			
	TIME	11: 100	11 40	1125	11 00	11.20	1,30	111 2	11,15	2:25	8: 25	7:55	818	7:55	8: m	8:16	8' m			
IN	ITIAL	Ques	un	ms	Juss	ans	9uB	ams	ems	ans	2m3	ans	QUB.	GMB	ams	9m3	gms			

Comments:

Pimephales promelas CHRONIC TOXICITY TEST DATA SHEET

MWRD PLANT: HANOVER PARK ANALYST: G.V. BILLETT ASSAY DATE: 7-22-09

% Conc.	Cup No.				Adult S	urvival							Temper	ature(°C)		1,27	
Efflue	nt	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
7.50	11A	10	10	10	10	10	10	10	10	24.6				25,6			
75%	11B	10	10	10	10	10	10	10	10		25.7				25.8		
	11C	10	10	10	10	10	10	10	10			25.6				25.7	
	11D	10	10	10	10	10	10	10	10				25.4				25.6
	TIME	الأقم	This you	1:35	.35 11 12.00	11: 25	11.25	11:00	11 20	2.70	8:25		,	8: m	8 10	8 120	8: m
IN	ITIAL	Jus	am	OMB	QuB	Qm3	ans	Jun3	Quis	gms	Ques	Qun3	QUB.	ans	amis	Sus	Oms

0 0	Cup				Adult S	urvival							Temper	ature(°C)			1
% Conc.	No.																
Efflue	nt	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
100%	12A	10	10	10	10	10	10	10	10	24.7				25.8			
100%	12B	10	10	10	10	10	10	10	10		25.5				25-6		
	12C	10	10	10	10	10	10	10	10			25.5			-	25,6	
	12D	10	10,	10	10	10	10	10	10				25.4				25.7
	TIME	11:40	11145	1:00	11:40	11:30	11.30	ii an	11.30	2:30	87 25 Av	8:00	8188	8100	8,10	81 m	8:40
IN	ITIAL	Quis	MB	ems	GMB	gm	PM	ans	9mB	9m3	Qu3	ams	Gus	Ques	Qui	GmB	Juns

Comments:

Alkalinity, Hardness, and Residual Chlorine Record:

AIRAIIII Cy, IIa	ranced, an	DDIGGN D	at childrine ked
Date/Initials/Time		Burette	Alkalinity
		Reading	(mg/L as CaCO ₃)
Date: Sample 1	Control		
7 , 22 11-2	E 150	5.6	112.0
7 / 22 / 09	100%		
GUB.	Effluent	5.5	110.0
Date: Sample 2	Control		
7 /24 / 09		5.7	114.0
	100% Effluent	5.8	116.0
Date: Sample 3	Control		
7 126 109		5.6	112.0
7/25/69	100% Effluent	5.7	114.0

Burette Reading	Hardness (mg/L as CaCO ₃)
4.1	164.0
5.2	208.0
4,1	164.0
5.4	216.0
4.3	172.0
5.7	228.0

Residual Chlorine (mg/L)
0.0
0.0
0,0

CONTROL/				C	ONDUCTIVITY			
EFF conc.	0	24	48	72	96	120	144	168
LW	0.571	0.567	0.570	0.571	0.577	0.581	0.570	0.579
12.5	0.602	0.594	0.602	0.604	0,607	0.610	0,608	0.608
25	0.639	0.630	0.637	0.639	0.644	0.638	0.644	0.641
50	0.707	0.701	0.718	0.717	0.723	0.725	0.721	O. X 720
75	0.781	0.776	0.792	0.794	0.802	0.808	0.802	0.806
100	0.851 PUD	0.840	0.867	0.870	0.882	0.887	0.881	0.886
Date/Time	7. 22-09	7-23-09	7-24-09 10:50 Am	7-25-09 9:25m	7-26-09 9:04	7-27-09 5:05 M	7.28-09 9:05 Am	7-29-09
Initials	GUB.	GNB.	QUB.	GUB.	lev.B.	Jers3	QUB	LUB.

MWRD Plant: HANOVER PARK	Analysts: G. V. B.LL.TT	Test Date 7- 22-09	
Feeding Times/Type of Food/Initials:	Brand Argentenia	Lot Number BV 074A	
BS = Brine Shrimp : Shrimp Brine Shrim	p set-up (Time) Beaker A 200	AM / PM Beaker B 900 AM F	M
(Fish fed 0.15 mL of concentrated newl USEPA Manual EPA/600/4-91/002; 1994)	y hatched baby brine shrimp per	test vessel as specified in	

FEEDING SCHEDULE: If the test is initiated after 12:00 PM, feed fish once; on following days, feed fish at the beginning of the work day, at least 2 h before test solution renewal, and at the end of the work day, after test solution renewal.

Do not feed fish during the final 12 h of the test.

FISH FEE	DING RECORD		T	TIME AND INITI	ALS		
Time (h)	0	24 (day 1)	48 (day 2)	72 (day 3)	96 (day 4)	120 (day 5)	144 (day 6)
Morning	4: 15 m	8: of Am	7:55 m	8: 10 km	q: 40 LUR	7:50 0003	8:40 LUB
Evening	2:40 pm	3:25 pm 910B	3:25 2- Qui	2:30 Pr. 13	1:55 pm Ques	3:25 m	3,20 pm3

TEMPERATURE*/LIGHT RECORD**

LEMPE	KALOK	E-/ LIGHT KECO	CD						
		· lus	24 (day 1)	48 (day 2)	72 O(day 3)	96 (day 4)	120 (34)(5)	144 (day 6)	168 (day 7)
Tray	1	100	ر د د			"2	000	g°2	00
*Therm.#_	45	25.3	35.83.2	25. 88.1	25.078,2	35.073.6	24.7	24.6	35.85.8
Tray	2	35.50	25.0°0	25.100	15.0°C	25.000	14.9	14900	25.00
* Therm.#	45	74.8	68.8	72.6	23 55.4	60.0	63.6	60.9	62.1

^{**}Light Meter (SPER Scientific Serial No. 031444) Calibrated on MAR. / 04 / 2009

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

FATHEAD MINNOW-Pimephales promelas CHRONIC TEST DATA SHEET TEST DATE 7-22-09

MWRD Plant: HANOVIR PARK Analysts: G.Y. BILLATT

Treatment/Replicae	Dry Wt. W/Fish gm	Tare Wt. gm	Wt. Of Fish gm	ORIGINAL # OF FISH (ON)	Avg. Wt Per Fish gm (ON)	Avg. Wt Per Fish mg (ON)
CONTROL	Giers					
7A	2. 36.1731	2.1599	0. 0132	10	0.0013	1.3200
7B	2.1747	2.1620	0. 0127	10	0.0013	1,2700
7C	2. 0848	2. 0742	0.0106	10	0.0011	1,0600
. 7D	· 2. 0848 CMB	2. 0906	0. 0106	10	0.0011	1,0600
12.5 % EFFLUENT	2 1012 70		0,0138AY			
8A	2. 0930	2. 0792	00136	10	0.0014	1,3800
8B	2. 1739	2.1326	0.0113	10	0.0011	1.1300
8C	2. 0888	2. 0745	0.0143	10	0.0014	1.4300
8D	2. 1554	2. 1415	0.0139	10	0.0014	1.3900
25 % EFFLUENT			1000			
9A	2. 0938	2. 08 18	0.0120	10	0.0012	1.2000
9B	2. 1552	2.1431	0.0121	10	0.0012	1.2100
9C	2. 0830	2. 0686	0.0144	10	0.0014	1.4400
. 9D	2. 0866	2. 0754	0.0112	10	0.0011	1.1200
50 % EFFLUENT						
10A	2. 1727	2. 1592	0.0 135	10	0.0014	1.3500
10B	2. 1593	2.1450	0.0 143	10	0.0014	1.4300
10C	2. 1622	2. 1490	0.0132	10	0.0013	1,3200
10D	2. 146 2	2. 1321	0.0141	10	0.0014	1,4100
75 % EFFLUENT			1			
11A	2. 1616	2. 1483	0.0133	10	0.0013	1.3300
11B	2. 0881	2. 0760	0.0121	10	0.0012	1.2100
11C	2.0864	2. 0733	0.0131	10	0.0013	1,3100
11D	2.1631	2.1499	0.0132	10	0.0013	1,3200
100 % EFFLUENT						
12A	2. 1589	2. 1461	0.0128	10	0.0013	1.2800
12B	2. 1594	2. 1451	0.0143	10	0.0014	1,4300
12C	2. 1380	2. 1238	0.0142	10	0.0014	1.4200
12D	2. 1551	2. 1421	0.0130	10	0.0013	1.3000

Count the surviving larvae in each test chamber and immediately prepare for dry weight determination. Transfer each group of larvae to a tared glass vial that has been properly labeled. Dry vials at 60°C, for 24 h or at 100°C for a minimum of 6 h. Immediately upon removal from the drying oven, place the glass vials in a dessicator until weighed. Measure all weights to the nearest 0.01 mg and average weights should be expressed to the nearest 0.001 mg. Prepare a summary table as illustrated above.

Fathead Minnow

Water Reclamation	Plant: Hanover Park	Collection Date: 07-22-08
Number of treatmen Number of replicat	ts, including the Control(ses:4 Number of organism	s):6 ns per replicate:10
	ACEMENT OF CUPS IN TRAYS Tray 1 Cup 7B Cup 8D	12:45 9M
Cup 7C√ Cup 12C ✔	Cup 9C / Cup 9A /	
Cup 10A Cup 9B	Cup 11D Cup 10D	
Cup 10BV Cup 11AV	Cup 8C Cup 12E	
	Front of Tray	
	Trans 2	
Cup SAV Cup SBV	Iray -	Land Land and Control of the Control
Cup 9D Cup 11C		
Oup 7DV Oup 7A V		
Cup 100 / Cup 12D 1		
No. of Contract Contr	Front of Tray	

Number of organisms for each cup checked by

APPENDIX BII

RAW DATA FOR *CERIODAPHNIA DUBIA*WHOLE EFFLUENT TOXICITY TEST CONDUCTED ON
HANOVER PARK WATER RECLAMATION PLANT
FINAL EFFLUENT COLLECTED JULY 20-25, 2009

Ceriodaphnia dubia CHRONIC TOXICITY TEST DATA SHEET
MWRD Plant: Hanny Fork Sample type: Effluent Analysts: James Kaehn Laboratory water (LW): MHSW/(SW WITH SELENIUM) (circle one) Date 7/13/09 Approved by Biologist I

Beginning Test Date 7-22-09 Time 10:45am Sample Dates 7-z:-09 7-23-09 Ending Test Date 7-29-09 Time 10:45am Calibrated Thermometer: 80319997

3pm to 11pm) 11pm to 7am, or 7am to 3pm Test Tray Location Center Table, Left side (aid side) Species: C. dubia Source: In-house Age group of neonates (3pm to 11pm) Ceriodaphnia Tray # 10 D Incubator I.D.

% Conc.				Dis	solved Oxy	gen- mg/l				-			Н			
	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
New 0	7.25	6.36	7,74	7,05	7,62	7.61	7.52		7.77	8.06	8.0.5	8.04	7.92	7.75	7.76	
12.5	7.79	7.00	7.50	7,24	7.72	7.02	7.03		7,33	7.89	7.78	7.86	7,80	7.71	7.70	
25	7.73	7.16	1.73	7.35	7.90	7.19	7.10		7.73	7.79	7.71	7.75	7.70	7.64	7.71	
50	8.22	7.58	8.06	7.48	8.22	7.36	7.23		7,59	7.63	7.57	7.59	7.50	7.48	7.61	
75	8.73	7.82	8.51	7.66	8.45	7.52	7.43		7.46	7.51	7.47	7.49	7.38	7.40	7.41	
100	8.71	7.98	8,85	8.01	8.75	7.64	7.54	NA	7,36	7.39	7.39	7.36	7.26	7.42	7.36	NA
Old 0		1.50	8.25	7.57	7.86	7.24	8.18	7.69		7.97	8.01	8.11	7.80	8.00	8.39	8.10
12.5		7.73	8.42	7.83	8,16	7.49	8.37	3× 1(20) 29		8.02	3.03	8.20	8,00	8.09	8.38	8.15
25		7.76	2.44	7.93	8.31	7.58	8.48	8.02		8.00	8.03	8.25	8.07	8.12	8.35	8.19
50		7.71	8.38	7.96	8.29	7.52	8.25	8.06		7.97	8.00	8.26	g. 08	8.10	8.35	8-18
75		7.68	8,19	8.02	8.45	7.50	3.29	8.22		7.94	7.93	8.28	8.08	8.08	8.32	8.20
100		7.65	8.28	7.95	8.62	7.45	2.17	8.16		7.92	7.94	8.26	8.10	2.01	8.25	8.19
Time		2:45 pm	2 45pm	2:45 pm	2:45 pm	2:45pm	2:45pm	12:20		2:55 pm	2:55pm	2:55pm	2:55pm	2:55pm	2:55pm	12:20
Initials	NA	J⊁	7K	JK	JK	JIK	JK	W-	NA	٦ĸ	JK	コメ	2K	JK .	1K	75

MWRD PLANT: Hander Park ANALYST: James Kaehn ASSAY DATE: 7-22-09

% Conc.	Cup No.			(accepta	Tempe able temp	rature of perature		C)		% Conc.	Cup			(accep		erature on perature	C e : 24-26º	C)	
cont	rol	0	24	48	72	96	120	144	168		No.	0	24	48	72	96	120	144	168
	1A		75.0								2A		24.9						
LW	1B			25.3						12.5%	2B	1		25.3					
	1C				25.0						2C	1			25.2				
	1D					25.1					2D					25.1			
	1E	25.1					25.1				2E	24.7					25.0		
	1F	2						25:0			2F							52:1	
	1G								25.1		2G								24.9
	1H								25.0		2H								25,3
	11										21	C.							
	1J										2J								
	TIME	High	11:1524	11:15am	11: 15am	11:15am	11:15am	11:1500	11:15am		TIME	11:15	11:1532	11:15am	11:15am	11:15am	11:15am	11:152	11: 15an
INI	TIAL	JK.	JK	JK	JK	JK	sh	Jh	JK.	INI	TIAL	31c	JK	JK	74	JK	JR	JR	JK

% Conc.	Cup No.			(accepta		erature oc perature		C)		% Conc.	Cup			(accep		erature nperatur	°C e : 24-26°	PC)	
		0	24	48 191010	72	96	120	144	168		No.	0	24	48	72	96	120	144	168
	3A		25,0	250							4A		25.0						
25%	3B			25.0						50%	4B			25.1					
.2070	3C				24.7						4C				25.3				
	3D					24.7					4 D	25.0				25.1			
	3E	25.1					25.1				4 E	52.					25.0		1
	3F	2						24.8			4 F	1		-				24.8	
	3G								24-8		4 · G	1							25.0
	3H								25.0		4 H								25.1
	31										4 I								
	3J					-					4J								
	TIME	11:15	11:15am	11:15 am	11:152m	11: Wam	11:152m	11:15 11-	11:15am		TIME	11:35	11:15 am	11:15an	11:15Am	11:15 am	11:15am	11:1524	11:15am
IN:	ITIAL	JK	JK	14	JK	7K	JK	JX	عاد	INI	TIAL	Jk	JK	JK	JK	ノド	JK	N	JK

Measure Temperature at the end of each 24 h exposure period in at least one test chamber at each test concentration and in the control. Measure temperature in two test vessels at the end of the test to determine the temperature variation in the environmental chamber. Comments

Comments

Ceriodaphnia dubia CHRONIC TOXICITY TEST DATA SHEET lanover Park ANALYST: James Kaehn ASSAY ASSAY DATE: 7-12-09 MWRD PLANT: Hanover Park

% Cor		Cup No.		(acceptal	Tempera	ature °C erature :		C)		% Conc.	Cup		(:	acceptab		ature °C erature :)	
			0	24	48	72	96	120	144	168		No.	0	24	48	72	96	120	144	168
		5A		25.1								6A		25.0						
		5B			25.3							6B			25.1					
75	38	5C				25.0					100%	6C				25.0				
		5D					25,2					6D	, 9				25.2			
		5E	24.8					25.1					24.9					25.0		
		5F	-						24.8			6F							24-8	
		5G								25.2		6G								25.0
		5H								25.2		6Н								25.3
		51										6I]							
		5J										6J								
	T	IME	11:1500	11: 15am	11:15am	11:1521	11115am	11:15am	11:15am	11:15am				11:15an	11:15 am		11:15am		11:1524	
I	NIT	IAL	2K-	1×	7K	24	7.K	JIL	JK	JK	INI	TIAL	JK	JK	JK	JK	JK	JIC	JK	JK

Measure Temperature at the end of each 24 h exposure period in at least one test chamber at each test concentration and in the control. Measure temperature in two test vessels at the end of the test to determine the temperature variation in the environmental chamber.

NEONATES (T	'IME :	3pm-11p	m) In	niti	als:	NF-	
TRAY # 100 BIRTH DATE:	7-21-0	59 Jz 22-1						
-	7,22	09	WATER	SOURCE:	LW	(DATE	: 7-1	3-09)

BII-4

Ceriodaphnia dubia CHRONIC TOXICITY TEST DATA SHEET
Hanger Pack ANALYST: James Kachin ASSAY DATE: 7-22-09

I _V I /	WKD P	LANT:	Ma	N OVEY	19	rk	Al	NALYS'	1:	Jame	> La	CVIVI	ASSA.	DATI	· ·			REMOVE HOLES OF
% Conc.	Cup No.			N	Numl eonates	ber of Produc	ed							It Surviv	al			
*Parent Cup		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168	Total
7	1A	0	0	0	6	10	15	0	31	1	١	1	1	1	1	(1	1
Lab Wates 2	1B	0	0	7	0	11	14	13	32	1	١	1	1	١	1	1	1	١
Control 26	1C	0	0	6	0	10	14	13	30	1	1	1	1	1	1	1	1	1
27	1D	0	0	6	0	12	15.	0	33	1	ı	1	1	(1	1	1	1
.28	1E	0	0	b	0	10	16	0	32	1	1	1	1	1)	1	1)
30	1F	0	0	0	4	7	13	0	24	1	1	1	1	1	١	1	1	1
34	1G	b	0	3	0	10	18	0	36	1	1	1	1	ı	1	1 .	1	1
35	1H	0	0	8	0	13	15	14	36	1	1	1	1	1	1	- 1	1	1
39	11	U	0	0	5	9	15	0	29	1	1	1	١	1	1)	1	1
42	1J	0	0	0	6	11	14	0	31	1	1	1	1	1	1	١	(١
Т	OTAL	0	0	41	21	103	149	40	314	10	10	10	10_	10	10	10	10	10
	TIME	11:20am	11: 20am	11:207m	11:20an	11:202m	11: 20am	11:202m	11:20	10:45m	10:45m	10:45	10:45m	10:162	10.429K	10:43/	10:425m	10:45am
INI	TIAL		JK	JK	٦K	ンベ	1K	ンズ	7K	7K	JK.	JK	ンド	ok	7K	74	JK	JK

% Conc.	Cup			Numbe	er of Neo	nates P	roduced	ev w.					Adu	It Surviv	ral			
Effluei	No.	24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168	Total
Lilido	2A	0	Ö	5	٥	- 11	17	0	33	1	1	1	1	1	1	1	1	1
12.5	2B	0	0	6	0	11	17	14	34	1	1	1	١	١	ì	1	1	1
	2C	0	0	6	0	13	20	0	39	1	1)	1	1	١	1	١	1
	2D	0	0	1	4	12	16	0	33	1	1	1		١	1	1	١	
	2E	0	0	5	0	1)	18	13	34	1	1	1	1	١	l	١	1	i
	2F	C	0	6	0	14	16	0	36	1	1)	1	1	1	1	1	1,
	2G	0.	0	7	0	12	18	0	37	1	1	1	1	١	1	١	١	1
	2H	Ö	0	7	O	12	17	16	36		1	1	١	1	1	1	1	1
	21	Ú	0	4	3	13	16	0	36	1	1		1	1	1	١	1	
	2J	٥	0	7	0	13	15	Ь	35	1	1	1	1	1	1	١	1)
7	TOTAL	0	0	54	7	122	170	43	353	16	10	10	10	10	10	10	10	10
	TIME	11:202W		11:20am	11:20am	11-20m	11:20am	11:20 am	11:20 m	10:45 mm	10:50	10:50 cm	10:20an	10.00	10:50am	10,502	10.20-	10.502m
INI	ITIAL	7.大	7.4	ンド	1K	JK.	JK	1K	1)K	JK	ンド	JK	JK.	7K	7K	74	11/2	JK

At test termination all observations on test organism survival and numbers of offspring should be completed within 2 hours. Any animal not producing young neonates should be examined to determine if it is male after day 7 of the test. Check with Biologist I to observe test organism on a microscope slide.
*For tracking test organisms to brood board tray.

BII-5

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

MWRD PLANT: Hanover Park ANALYST: James Kacha ASSAY DATE: 7-22-09

% Conc.	Cup No.					ber of	duand						A	dult Surviv	/al			
	INO.	24	48	70	96	nates Pro		100	Tatal		24	40	70	96	100	144	100	Tatal
Effluent			-	72		120	144	168	Total	0	24	48	72	90	120	144	168	Total
	3A	0	0	5	0	10	18	O	33	- 1	ţ	1	1	ØI	1	1	1	1
25%	3B	0	0	4	0	12	16	0	32	1)	1	1	1	1	1	1	1
	3C	0	0	7	0	12	14	0	33	1	1)))	1	1)	1
	3D	0	0	6	0	10	17	11	33)	1	1	1	1	١	1	1	1
	3E	О	0	4	0	11	15	0	30	١	1	١	١))	1	1	1
	3F	0	0	6	0	12	18	0	36	١	١	1	1)		١	1	t
	3G	0	0	5	0	12	81	0	35	١	1	1	1	1	١	1	1	1
	3 H	0	0	4	0	13	21	16	33	1	١	١))	1	1	1	١
	31	0	0	6	O	13	19	0	38	1	1	1	1	1	1	1	1	1
	3J	0	0	0	8	14	15	0	37	(1	1	3	1.	1)	1	1
	TOTAL	0	0	47	8	119	171	27	345	10	10	10	10	10	10	10	10	10
	TIME	11:22am	11:22am	11:72am	11:22	11:22am	11:253m	11:22am	11:32	10:452m	10:5am	10.5524	10:55	10:55am	10:55	10:55am	10.55am	10:55am
IN	ITIAL	JK	74	JK	JK	24	JK	1K	シド	JK	JK	JK	JK	1K	JK.	JK	ント	J.L

%	Cup			Numbe	r of Neo	nates Pr	oduced						Ad	ult Survi	val			
Conc.	No.																	
Effluent		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168	Total
	4A	0	0	Ġ	ō	10	16	19	32		1	1	ì	ſ	1	1	1	1
50%	4B	0	0	4	0	1)	15	10	4030	1	1	1	1	1	1	1	1	1
	4C	0	Ò	5	0	11	19	16	35	1	1	1-	1	1	1	1	1	1
	4D	0	0	0	6	11	17	0	34	1	1	1	1	1	1	1	1	1
	4 E	0	0	3	0	1)	17	0	31	1)	1	1	1	1	1	١	1
	4 F	0	O	5	0	11	14	11	30	1	1	1	١	1	1	i	- 1	1
	4G	0	Ю	3	0	12	17	16	32	1	1	١	1	l	1	1	1	1
	4 H	0	D	6	0	10	18	15	34	1 .	1	1	1	1	1	1	1	1
	4 I	0	0	6	0	11	16	0	33	1	1	1	1	1	1	1		1
	4J	0	0	5	0	10	16	10	31	1	١	1	١	1	1	1	1	1
	TOTAL	0	0	43	6	108	165	97	322	10	10	10	10	10	10	10	10	10
	TIME	11:27 am	11:22	11:22 am	11:2224	11:32 m	11:22200	111222m	11:35 mm	10:45am	111.00 211-	11:0031	11:002-	11:002	Higo	11:002	11:002~	11:09
IN	ITIAL	JK	7K	ノヒ	JK	ンベ	JK	JK	リド	JK	JK	つ人	JE	JK.	JK	JK	Ju	×

At test termination all observations on test organism survival and numbers of offspring should be completed within 2 hours. Any animal not producing young neonates should be examined to determine if it is male after day 7 of the test. Check with Biologist I to observe test organism on a microscope slide.

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO Ceriodaphnia dubia CHRONIC TOXICITY TEST DATA SHEET

MWRD	PLANT:	 ANALYST:	ASSAY	DATE:	

%	Cup			N	Num	ber of	a d						Ad	ult Survi	val	9.		
Conc.	No.	04	40			120	144	168	Total	0	24	48	72	96	120	144	168	Total
Effluent		24	48	72	96			100		-	1	40	1	- 1	1	1	1	1
	5A	O	0	5	ð	10	14	1	30	1	'	1	- '		À	,		-
	5B	O	0	0	0	0	0	0	.0	1	1	١	1	0	0	0	0	0
75%	5C	0	0	5	0	11	13	0	29	1	١	1		١	1	1	1	
	5D	0	0	5	0	10	14	0	29	١	1	l	1	(1	- 1	1	1
	5E	b	0	0	6	10	13	0	29	1		1		1	1	١	1	J
	5F	0	0	0	6	9	14	0	29	1	1	1	i	1	. 1	1	1	1
	5G	0	0	5	0	10	14	10	29	J.	1	1	1	1	1	1	1	
	5H	0	0	5	0	12	13	14	30)	1	1	1	1	1		1	1
	51	0	0	6	0	11	16	0	33	1	1	1	1	1	1	1	1	
	5J	0	Ō	0	6	10	14	0	30	(1	1	1	1	1		1	1
TOTAL		0	0	31	18	91	125	25	268	10	10	10	10	9	9	3	9	9
TIME		11:242-	11.24am	11:242	11:242	11:24	11:2424	11:2424	11:242	10:45m	11:05 zv	11:05	11:05am	-	11:05m	11:05	11:030	11:05am
INITIAL		JK	1K	je	JR	15	-3 K-	JK	1K	_J <i>i</i> /_	JK	71	14	74	JK.	114	-1/2	JK.

%	Cup			Numbe	r of Neo	nates Pr	roduced						Ad	ult Survi	val			
Conc.	No.																	
Effluent		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168	Total
	6A	0	0	Ö	5	8	1	0	. 14	. 1	t	1	1	1	1		1	1
	6B	C	0	6	0	10	13	12	35	ı		l	1	1	1	1	1	١
100%	6C	0	0	2	0	8	11	0	21		ı	1	- 1	1	-	1	1	1
	6D	0	Ŏ	0	0	8	11	9	28	1	1	1	1		1	1	1	1
	6E	C	0	1	0	8	11	11	31	1	1	1	1	1	١	1	1	1
	6F	0	0	0	6	10	10	0	26)	١	1	1	1	١	1	-1	١
	6G	0	0	4	Ò	10	10	1	25)	1	1	١)	١	1	1)
	6H	0	0	5	0	8	13	13	26)	1	1	1	١	1 .	(1	1
	61	0	0	0	5	10	11	0	26	1	1	1	1	1 .	1	-1	1)
	6J	0	0	0	6	.9	7	0	22	1	1	1	ſ	1		(1	\
	TOTAL	U	0	12	20	89	98	46	254	10	10	10	10	10	10	10	10	10
	TIME	11:24		11:24an	11:34	11:24211	11:39	11:2424	11:24 3m	10:45	11:1021	11:1030	11:10	11:10	11'10	11:19 1	11:10	
I	NITIAL	74	JK	7	71	74-	74-	JIL	コイ	JK	1K	11r	JIL	JK) K	JY	1)14	74

	100
Ceriodaphnia dubia CHRONIC TOXICITY TEST DATA SHEET	

MWRD PLANT: Hanover Park Amount Algae Fed: 0.1 mL Amount YTC Fed: 0.1 mL

ANALYST: James Kachn, ASSAY DATE: 7-22-09

Date	Algae Type / Harvest Date	Cell Concentration (cells/mL)	YTC/Thaw Date	Time Fed	Initials
7-22-09	S. capricornutum/ 7-7-09	3.39 × 107	4-22-09/7-21-09	10:45am	JK
7-23-0.9	S. capricornutum/	3.39×107	4-22-09/7-21-09	10:45am	JK
7-24-09	S. capricornutum/ 7-7-09	3,394107	4-22-09/7-21-09	10:45am	ンド
7-25-09	S. capricornutum/ -1-7-09	3.39 ×107	4-22-09/7-24-09	10:45am	٦Ķ
7-26-09	S. capricornutum/ 1-7-09	3.39×107	4-22-09/7-24-09	10:45am	JK
7-27-09	S. capricornutum/ 7-7-09	3.39×107	4-22-09/7-26-09	10:45am	JK
1-28-09	S. capricornutum/ ٦-٦-٥٥	3.39 × 107	4-22-09/7-26-09	10.45am	JK
NA -	3. capricornutum/				17

Incubator Temperature (*Calibrated Thermometer # 43) / Light Record**/Intials:

**Light Meter (SPER Scientific Serial No. 031443) Calibrated on $\frac{3}{}$ / $\frac{4}{}$ / $\frac{9}{}$

Incubator/ Shelf				*Temperature (°	C) / Light Readin	g		
	0 VK	24	48	72	96	120	144	168
aicle side	25.004 95.0	75,0% 88.7	15.504,5	24500/86.7	24.800/86.0	24.3°C/87.3	24.800/261	25.00/66.5
wall side	25.0 /95.0	15.0°C/88.2	25.0°C/ 20.4	25.0°C/82.5	24.80 0 79.1	24.800/80.7	24.8°C / 14.8;	10/2/50 12.5

METROPOLITAN WATER RECLAMATION DISTRICT OF SREATER CHICAGO Ceriodaphnia

Cup 1A Cup 6F Cup 5C Cup 1G Cup 5E Cup 2C Cup 6C Cup 4H Cup 3B Cup 2I Cup 4D Cup 5J Cup 3I Cup 5I Cup 4C Cup 4G Cup 6D Cup 6A Cup 5D Cup 1E Cup 3H Cup 2G Cup 5F Cup 6B Cup 5H Cup 5G Cup 6I Cup 2A Cup 4I Cup 6G Cup 5B Cup 1D Cup 4B Cup 4A Cup 2J Cup 6E Cup 1J Cup 1I Cup 3G Cup 4E Cup 5A Cup 6J Cup 4J Cup 1F Cup 2B Cup 4F Cup 3A Cup 2F Cup 6H Cup 3E Cup 1H Cup 2H Cup 3C Cup 2E Cup 1C Cup 3D Cup 3J Cup 1B Cup 3F Cup 2D

Number of organisms for each cup checked by Erica Collins

____Front of Tray____

APPENDIX CI

CHAIN-OF-CUSTODY FOR WHOLE EFFLUENT TOXICITY TESTS CONDUCTED ON HANOVER PARK WATER RECLAMATION PLANT FINAL EFFLUENT COLLECTED JULY 20-25, 2009

The WET Laboratory Chain-of-Custody Form SAMPLE COLLECTION ON-SITE PRINT NAME & SAMPLE SAMPLE SAMPLE SAMPLE DATE TIME BY TYPE LOCATION Temp °C STORAGE SIGNATURE (0.1-6 °C) AES/NO 07/20/09 0600 69°F TR ER.AB YES NO NICUSOR SIRS 07/20/09 1200 HIP FINA L 1 ++- LUEA EFFWiN YES/NO HP FINAL 1800 07/20/09 62AB 10 F EFFLUENT EFFLUENT YES NO 2400 07/20/09 GRAB HP FINAL inthalbhitchebo EFFLUENT EFFLUENT YES NO 07/21/09 0600 HP FINAL MICHAEL ZIDON'S GRAB 68°E MZ EFFLIENT EFFLUENT Note: Sample container should be rinsed and should be filled completely leaving no air space between contents & lid. Preserve samples on ice or refrigerator (0.1-6°C) immediately after collection. Transport samples to the WET Laboratory immediately after the fifth sample is collected. The WET laboratory is located in Room LE-100, Lue-Hing R&D Complex. AFTER CLORINGTION -) DECLORINGTION -) DECLORINGTION -) Indicate if the final effluent was chlorinated: (Tes / No / NA SAMPLES RELINQUISHED BY: Name_NICUSOR SIRB! Signature: MA 5:43 Date/Time: 7/21/09 1824 A SAMPLES TRANSPORTED TO WET LAB. BY Name AMANDA SAVERSCUSIGNATURE: Dannedachura sa Date/Time: 7/21/09 FOR WET LABORATORY USE ONLY: Sample Received by: Name G.V. B.LIET Signature W. B. May Date/Time 10:00

1. Samples received with prescribed holding time (within h of collection)? 1. (Yes)/ No /(NA) (Not Applicable, if chronic test)
Samples logged in by Date 7.21. 9 Time 10 30 AM 2. (Yes) No 3. Each sample container labeled with a unique ID? Were collection times for effluent and receiving water within 1 h of each Yes / No 5. Yes No 6. Yes No Did samples have sufficient volume for analysis? 6. Samples accepted Special Observations рН Sample Custodian Residual Chlorine Sodium-thio-sulfate LIMS # Sample Temp (mg/L) Initials Type/ID °°C Signature 0,000 Indicate Total HPOUTCH1A 573978W 3.0 7.01 ml of 5% Total Ammonia 5789786 HPOUTCH1B 3,0 692 Sodium-thio-sulfate (mg-L) ALD Results added. Initial 5.789786 3.0 HPOUTCH1C 6 86 Final Residual Cl₂ reading 5789786 HPOUTCH1D 6.84 0.21 5789786 HPOUTCH1E 5.0 7.00 Initial Note: Set aside one cubitainer for metals and chemical analyses Sample Received By: Trace Metals 721-04 Lachat Materials Sample aliquot received by Date_ Time Name Signature Sample Release for Disposal Sample released for disposal following analysis on (Date) ______ by ____ Samples Discarded by Date/Time

The WET Laboratory Chain-of-Custody Form SAMPLE COLLECTION ON-SITE SAMPLE SAMPLE SAMPLE SAMPLE PRINT NAME & DATE TIME BY TYPE LOCATION Temp °C STORAGE SIGNATURE (0.1-6 °C) YESINO 07/22/09 0600 21°c EFFLUENT (TRAR (YE)/NO 1200 07/22/09 FFLUENT 3.40 PM NS GRAB \$ 205c YESINO 07/22/09 GRAB EFFLUENT NS YES/NO 07/22/09 2400 GRAB mz YES NO 07/23/09 0600 GRAB Note: Sample container should be rinsed and should be filled completely leaving no air space between contents & lid. Preserve samples on ice or refrigerator (0.1-6°C) immediately after collection. Transport samples to the WET Laboratory immediately after the fifth sample is collected. The WET laboratory is located in Room LE-100, Lue-Hing R&D Complex. CHOZINATION - DECHLORINATION -FOR WET LABORATORY USE ONLY: ple Received by: Name G. V. B. L. F. T. Signature U. B. Date/Time 7-27-09
Samples received with prescribed holding time (within 4 h of collection)? Sample Received by: Name G. V. BILLET Signature U. 1. (Yes)/ No / (NA) (Not Applicable, if chronic test)

2. Samples logged in by _____ Date 7.33. Frime

3. Each sample container labeled with a unique ID? Date 7-23. Grime 10.45 4-4 2. Yes / No 3. (Yes / No 4. Were collection times for effluent and receiving water within 1 h of each 4. Yes / No ((NA)) other? 5. Yes / No 6. Yes / No 5. Did samples have sufficient volume for analysis? 6. Samples accepted Special Observations Sodium-thio-sulfate рН Sample Residual Chlorine Sample Custodian Temp °°C (mg/L) Initials Added YES/NO Type/ID Signature Indicate Total 5792025 HPOUTCH2A 1.5 0.0 448 QU. Billow 7.03 ml of 5% 5792035 HPOUTCH2B Total Ammonia 200 € 7.16 Sodium-thio-sulfate (mg-L) ALD Results added. Initial 5792025 HPOUTCH2C 1.0 € 7.01 . Final Residual Cl₂ reading 5792025 HPOUTCH2D 6.95 3.0 € mg/l Initial 0.38 579.2025 HPOUTCH2E 6.94 600 Set aside one cubitainer for metals and chemical analyses WHA SCHLITT 7.23-69 Time Sample Received By: Trace Metals Lachat Materials Sample aliquot received by Date____ Time Name Signature Sample Release for Disposal Sample released for disposal following analysis on (Date) _____ by ____ Samples Discarded by

Samples Discarded by

73

FRILLY OR

WET-L COC Revision 1.1 12/22/04

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

The WET Laboratory Chain-of-Custody Form SAMPLE COLLECTION ON-SITE SAMPLE SAMPLE SAMPLE SAMPLE PRINT NAME & STORAGE TYPE LOCATION SIGNATURE D.\TE TIME BY Temp °C (0.1-6 °C) (YE)/NO E ZIDOUS 07/24/09 0600 MZ GRAR 20.5€ EFFLUENT 07/24/09 1200 1800 07/24/09 EFFLUENT 21.5°C SIDEA YES/NO 2400 07/24/09 YES/NO 07/25/09 0600 CFFLUENT 22°C Note: Sample container should be rinsed and should be filled completely leaving no air space between contents & lid Preserve samples on ice or refrigerator (0.1-6°C) immediately after collection. Transport samples to the WET Laboratory immediately after the fifth sample is collected. The WET laboratory is located in Room LE-100 Eye-Hing R&D Complex. The WET laboratory is located in Room LE-100 Eye-Hing R&D Complex. The WET Laboratory immediately after the fifth sample is collected. The WET laboratory immediately after the fifth sample is collected. The WET laboratory immediately after the fifth sample is collected. The WET laboratory immediately after the fifth sample is collected. The WET laboratory immediately after the fifth sample is collected. The WET laboratory immediately after the fifth sample is collected. The WET laboratory is located in Room LE-100 Eye-Hing R&D Complex.

SAMPLES RELINQUISHED BY: Name And WET laboratory immediately after the fifth sample is collected. The WET laboratory is located in Room LE-100 Eye-Hing R&D Complex. SAMPLES TRANSPORTED TO WET LAB. BY Name AMAN DASA KAS Signature: [mandadis your Date/Time: 15109 840+4 FOR WET LABORATORY USE ONLY: Sample Received by: Name (J.V.B.LLAT Signature) Date/Time 7-25-09

1. Samples received with prescribed holding time (within 4 h of collection)? Yes Y No / (NA) (Not Applicable, if chronic test)

2. Samples logged in by 405 Date 7.25 Time

3. Each sample container labeled with a unique ID? Date 7 - 25-00 Time 10 :30 has Yes No 4. Were collection times for effluent and receiving water within 1 h of each other? 5. Did samples have sufficient volume for analysis?6. Samples accepted No No Special Observations Residual Chlorine Sodium-thio-sulfate Temp LIMS # Sample рН Sample Custodian YES/NO Initials Added Type/ID (mg/L) Signature Indicate Total 5192032 HPOUTCH3A 1.0 7.00 0,0 ml of 5% Total Ammonia Sodium-thio-sulfate 5792032 HPOUTCH3B 3.0 6.97 (mg-L) ALD Results added. Initial 2.50 5792032 HPOUTCH3C 7.07 . Final Residual Cl₂ reading 5792032 HPOUTCH3D 7.00 mg/15192032 0.19 HPOUTCH3E 7.11 Initial 4.0 cubitainer 715 Sample Received By: Trace Metals Lachat Date 7-07-09 Materials Sample aliquot received by ___ Date____Time_ Name Signature Sample Release for Disposal Sample released for disposal following analysis on (Date)

APPENDIX DI

QUALITY ASSURANCE FOR THE PIMEPHALES PROMELAS
WHOLE EFFLUENT TOXICITY TEST:
RAW DATA AND STATISTICAL CALCULATIONS
FOR THE CONCURRENT REFERENCE TOXICANT TEST,
CONTROL CHARTS, AND CULTURE DATA

Mean Dry W	eight-mg Summa	ary								**	
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	4	1.16	1.09	1.23	0.88	1.29	0.0344	0.188	16.2%	0.0%
750		4	1.17	1.12	1.22	1.03	1.34	0.0237	0.13	11.1%	-1.08%
1500		4	1.46	1.42	1.5	1.33	1.56	0.0197	0.108	7.37%	-26.1%
3000		4	1.17	1.12	1.21	1.06	1.35	0.0232	0.127	10.9%	-0.65%
6000		4	0.347	0.269	0.426	0.15	0.62	0.0383	0.21	60.4%	70.0%

CETIS™ v1.7.0

CETIS Summary Report

Report Date: Test Code: 18 Aug-09 08:58 (p 2 of 2) 11-5520-6908/44DB0EFC

Larval Fish J.-d Survival and Growth Test

MWRD of Greater Chicago

7d Survival Rate Detail

	riate Detail								
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4				
0	Lab Water	1	8.0	0.8	0.9				
750		0.8	8.0	0.7	0.9				
1500		1	1	0.9	0.9				
3000		0.9	0.8	0.8	0.7				
6000		0.4	0.9	0.4	0.2				
8000		0	0	0	0				

Mean Dry Weight-mg Detail

Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4		
0	Lab Water	1.24	1.29	0.88	1.23	- Iq	
750		1.19	1.03	1.13	1.34		
1500		1.33	1.42	1.56	1.54		
3000		1.11	1.15	1.35	1.06		
6000		0.22	0.62	0.4	0.15		

000-015-170-3

CETIS™ v1.7.0

Analyst:____ QA:___

FATHEAD MINNOW - Pimephales promelas

CHRONIC RTT TEST DATA SHEET

Reference Toxicant: NaCl

Analysts: G. V. BILLETT

Laboratory water (LW): MHSW/HSW)WITH SELENIUM (circle one) Date approved

Beginning Test Date 7-22-09 Time 2:30 fm

Ending Test Date 7-29-09 Time 2:30: Pm

Species: Pimephales promelas

< - Source

CHAMBER

Hatch Date

Calibrated Thermometer # 5/N 8031 9998

NaCl (mg/L)			Dissolv	ed Oxyg	en- mg/	I						рŀ	1			
	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
	MEW								NEW							
Old 0	7,26	5.34	5.16	4.69	5, 26	5.12	4,83	5.31	8.01	7.21	7.04	7.29	7.24	7.28	7.23	7. 25
750	7.95	5.24	5.17	5.09	5.72	4.88	5.08	5.10	7.97	7. 36	7.26	7.38	7.37	7.27	7.32	7.30
1500	7.99	5.56	5.40	5,42	5,66	5.15	5.55	5,47	7.98	7.43	7.28	7.42	7.39	7.32	7.37	7.33
3000	8.00	5.31	6.02	5.41	5.62	5.17	5.49	5.44	7.96	7. 38	7.36	7.43	7.38	7.34	7.36	7.32
6000	7.98	5.38	5.97	5.69	6.05	5.41	6.54	6.31	7.89	7.36	7.30	7.45	7.43	7.36	7.47	7.37
8000	8,01	5.79	6.58	6.62	7.22		/		7.94	7.41	7.42	7.56	7.64	/		
Time	سر ۱۱۱	1130	31 20	1, 64	1230	من بو	215	3. 2	111 10	2 2m	3125	1745	1 1 90	2108	ai pu	3:04
Init.	GUB	Qu18	GmB	9mB	Qui3	gars	Cus	Ques	QuB.	Quis	Juns	gmB	Juss	Gm3	GMB	9m3

Measure DO at the end of each 24 h exposure period in at least one test chamber at each test concentration and in the control.

Measure Temperature at the end of each 24 h exposure period in at least one test chamber at each test concentration and in the control. Measure temperature in two test vessels at the end of the test to determine the temperature variation in the environmental chamber.

Measure pH each day, at the end of each 24 h exposure period, in at least one test chamber at each test concentration and in the control.

FATHEAD MINNOW - Pimephales promelas
Reference Toxicant: NaCl Analysts: G.V. BILLETT

CHRONIC RTT TEST DATA SHEET

Date: 7-22-09

	Cup No.	Adult Survival 0 24 48 72 96 120 144										Tempera	ature(°C)				
		0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
Control	7A	10	10	10	10	10	10	10	10	24.7			,	25.3			
LW	7B	10	10	10	10	9	9	9	8		25.4		_		25.5		
	7C	10	10	10	10	8	8	8	8			25.4				25.2	
	7 D	10	10	10	10	10	10	10	9.				25, 2				25.6
	TIME	2:30	7.90	2:45	110	1105	1:35	1118-	VIA PM	21 8.0	8:30	7: 45 m	8:00	7 45	7:55	810	8125
IN	ITIAL	gn3	Gms	Cm3	guns	(m)	ams	ans	em	Jus	ans	ans	ams	uns	Curs	guns	Quis

NaCl (mg/L)	Cup No.		Adult Survival									Temper	ature(°C)	Temperature(°C)								
		0	24	48	72	96	. 120	144	168	0	24	48	72	96	120	144	168					
750	8A	10	10	10	10	10	10	9	8	24.8				25.6								
	8B	10	10	10	9	9	9	9	8		25.4			-	25.5							
	8C	10	10	10	10	10	7	7	7			25.4				25.5						
	8 D	10	10	10	10	9	9	9	9				25.3				25.6					
	TIME	2:30	2772	250	1,500	11 0.0	135	1120	1140	2:450	8:30	7: 45	8:45	7:45	7155	8: m	8 125					
IN	ITIAL	an3	493	Qn3	Juss	9mB	9m3	ans	ems	QnB	lins	Qm?	ms	Juns	ams	em	ams					

Comments:		
Onunerics.		

FATHEAD MINNOW - Pimephales promelas CHRONIC RTT TEST DATA SHEET Reference Toxicant: NaCl Analysts: GV. BILLET Date: Date: 7-22-09

NaCl (mg/L)	Cup No.				Adult S	Survival				Temperature(°C)							
	140.																
		0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
1500	9A	10	10	10	10	10	10	10	10	a4.1				25.4			
	9B	10	10	10	10	10	10	10	10		25.3				25.4		
		9C 10 10 9 9 9 9 9 9				9			25.7				25.7				
	9D	10	10	9	9	9	9	9	9				25.3				25.6
	TIME	2:30	2.30	2:55	1:20	1,12	1 ips	1:25	1:35	2:45	8:30	7:45	8148	7:45	\$155	810	8:30
IN	TIAL	gn3	guis	ams	Jus	Ins	ans	am?	Om	ans	Que	gnos	gus	ams	gwi	9mB	wis

NaCl (mg/L)	Cup No.		Adult Survival										Tempera	ature(°C)			
		0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
3000	10A	10	10	10	10	10	10	9	9	24.0				25.2			
	10B	10	10	10	10	10	10	9	8		25.1				25.2		
	10C	10	10	9	9	8	8	8	8			25.2				25.2	
	10D	10	10	10	10	10	10	8	7				25.4	-			25.7
	TIME	2 33	2.40	3100	11250	1.20	1:40	1120	1.40	2:45	8:30	7:50	81 m	7:45	7:55	810	87 30
INI	TIAL	pris	9m3	an	Gus	9nB	9m	YM3	gm?	<i>inB</i>	ans	Gers	Quis	gnis	ans	am	OMB

Comments:		

CHRONIC RTT-PP

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

FATHEAD MINNOW - Pimephales promelas xicant:NaCl Analysts: G.V. B.LL.TT

CHRONIC RTT TEST DATA SHEET

Reference Toxicant: NaCl

Date: 7- 22- 09

NaCl (mg/L)	Cup No.				Adult	Survival							Temper	ature(°C)			
		0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
6000	11A	10	7	6	6	6	4	4	4	24.2				25.5			
6000	11B	10	10	10	10	10	9	9	9		25.4				25.5		
	11C	10	8	8	8	7	5	5	4			25.6				25,6	
	11D	10	8	8	7	5	3	3	2				25.2				25,6
	TIME	2:30	2:40	3105	1:30	1:25	j45~	1:35	1140	2: 50	8-35	7:50	8150	7:50	8 1 20	8, m	8130
IN	ITIAL	9113	ganz	gm?	OMB	9m3	ans	Gnis	om	ann	guis.	QuB	ams	gen;	gnos	9m3	OMR

NaCl (mg/L)	Cup No.				Adult	Survival							Temper	ature(°C)			
		0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
	12A	10	2	0	0	O	0	0	0	24.3				25.4			
8000	12B	10	0	0	0	0	0	0	0		25.5				25.5		
	12C	10	0	0	0	0	0	0	0			25.5			3	25.5	
	12D	10	4	1	1	0	0	0	0				25.2				25.5
	TIME	2130	2700	3.00	1:35 m	1:30	1:30	1.to	1140	2:00	8:35	7:50	8150 m	7.50	81 100	8:18	8 233
INI	ITIAL	oms.	Qu13	ans	QnB	ams	am3	OMB	am	ONB	gus	guis	Quis	gmis	Smis	am	OMS

Comments:			

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO FATHEAD MINNOW - Pimephales promelas CHRONIC RTT TEST DATA SHEET

Fish Feeding Record

	rish reeding Record
Reference Toxicant: NaCl	Analysts: G. V. BILLATT Test Date 7-22-09
Feeding Times/Type of Food/Initia	: Brand Argentemia Lot Number BV074A
BS = Brine Shrimp : Shrimp Brine S	rimp set-up (Time) Beaker A AM / PM Beaker B AM / PM
(Fish fed 0.15 mL of concentrated USEPA Manual EPA/600/4-91/002; 1	ewly hatched baby brine shrimp per test vessel as specified in 4)
on following days, feed fish at the and at the end of the work day, and not feed fish during the final	2 h of the test.
FISH FEEDING RECORD	TIME AND INITIALS
Time (h) 0 24 (day	48 (day 2) 72 (day 3) 96 (day 4) 120 (day 5) 144 (day 6)
Morning V: 05 Am	7:55 m B 8:10 0 B 7:45 m 7:50 m 8:35 m

Time (h)	0	24 (day 1)	46 (day 2)	12 (day 3)	30 (day 4)	120 (day 3)	III (day o,
Morning		8:05 Am B	1:55 m	8:10 Am 3.	7:45 An Quis.	7:50 mg	8:35 m
Evening	2:40 7 QUB	3125 PUB	3:25 QUB	2:30 P.T.	1:05 20 Ques	3:25 m3	3.20 pm

Tray 1
*Therm. # 43

Tray 2
* Therm. # 43

Tray 3
* Therm. # 43

Tray 3
* Therm. # 43

Tray 4
* Therm. # 43

Tray 4
* Therm. # 43

Tray 5
* Therm. # 43

T

**Light	Meter	(SPER	Scientific	Serial	No.))	Calibrated	on	/	/	/
												CHRONIC DTT D

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO FATHEAD MINNOW - Pimephales promelas CHRONIC RTT TEST DATA SHEET

Reference Toxicant:NaCl	Analysts: G. V. BILLZTT	Date: 7-22-09
Date	Day 0 (<u>7 / 22 / 09</u>)	Day 7 (7 / 29 / 09)
	CONDUCTIVITY (Initials 408.	Jus 3
F7 Minnow Lab water (LW)	(Reference~0.543 mS) O.567	0.571
F8 Minnow 750 mg/l	(Reference~1.914 mS) 2.060	2.100
F9 Minnow 1500 mg/l	(Reference~3.257 mS) 3.480	3.530
F10 Minnow 3000 mg/l	(Reference ~5.86 mS) 6.290	6.400
F11 Minnow 6000 mg/l	(Reference~10.94 mS)	11.660
F12 Minnow 8000 mg/l	(Reference~14.25 mS)	14.920
	ALKALINITY mg/L as CaCO, (Initials QuB.)	A.O.B.
F7 Minnow Lab water	Titr. Calc. 5,7 x 20 = 114.0	Titr. Calc. 5.6 x 20 = 112.0
	HARDNESS mg/L as CaCO ₃ (Initials $\mathcal{A} \cup \mathcal{B}$.	GUB.
F7 Minnow Lab Dilution w		Titr. Calc. $4.2 \times 40 = 168.0$

Measure Conductivity, Alkalinity, and Hardness in each new sample (sodium chloride concentrations and in the control).

FATHEAD MINNOW-Pimephales promelas CHRONIC RTT TEST DATA SHEET

Reference Toxicant: NaCl Analysts: G. V. BLLETT DATE 7-22-09

Treatment / Replicate	Dry Wt. W/Fish gm	Tare Wt. gm	Wt. Of Fish gm	ORIGINAL # OF FISH (ON)	Avg. Wt Per Fish gm (ON)	Avg. Wt Per Fish mg (ON)
CONTROL		-				
7A	2.1469	2.1345	0.0124	10	0.0012	1.2400
7B	2.1585	2.1456	0.0129	10	0.0013	1.2900
7C	2.0863	2.0775	0.088	10	0.0009	0.8800
7D	2.1120	2.0997	0.0123	10	0.0012	1.2300
750 mg/L						
8A	2.1127	2.1008	0.0119	10	0.0012	1.1900
8B	2.1601	2.1498	0.0103	10	0.0010	1.0300
8C	2.1566	2.1453	0.0113	10	0.0011	1.1300
8D	2.1003	2.0869	0.0134	10	0.0013	1.3400
1500 mg/L				4.7		
9A	2.1354	2.1221	0.0133	10	0.0013	1.3300
9B	2.1475	2.1333	0.0142	10	0.0014	1,4200
9C	2.1624	2.1468	0.0156	10	0.0016	1.5600
9D	2.1028	2.0874	0.0154	10	0.0015	1,5400
3000 mg/L			N. 2012	42392	oo as	1
10A	2.0810	2.0699	0.0111	10	0.0011	1.1100
10B	2.1391	2.1276	0.0115	10	0.0011	1,1500
. 10C	2.0930	2.0795	0.0135	10	0.0014	1, 3500
10D	2.0877	2.0771	0.0106	10	0.0011	1.0600
6000 mg/L						
11A	2.0894	2.0872	0.0022	10	0.0002	0.2200
11B	2.0888	2.0826	0.0062	10	0.0006	0.6200
11C	2.1332	2.1292	0.0040	10	0.0004	0,4000
11D	2.0696	2.0681	0.0015	10	0.0002	0.1500
8000 mg/L						
12A	2.	2.	0.	10	0.0000	0.0000
12B	2.	2.	0.	10	0.0000	0.0000
12C	2.	2.	0.	10	0.0000	0.0000
12D	2.	2.	0.	10	0.0000	0,0000

Count the surviving larvae in each test chamber and immediately prepare for dry weight determination. Transfer each group of larvae to a tarred glass vial that has been properly labeled. Dry vials at 60°C, for 2.4 h or at 100°C for a minimum of 6 h. Immediately upon removing memory from the drying oven, place the glass vials in a dessicator until weighed. Measure all weights to the nearest 0.01 mg. Prepare a summary table as illustrated above.

Fathead Minnow

Water Reclamation Plant:Reftox Collection Date:07-22-098
Number of treatments, including the Control(s):6
Number of replicates:4 Number of organisms per replicate:10

ORDER OF		T OF CUPS IN TRAYS y 1	110
Cup BC	Cup 7B Cup 12		2.0
Cup 10C	Cup 11A Cup 10	OD Cup 11C	
Cup 7A	Cup 12A Cup 9	D Cup 11B	
Cup 9A	Cup 11D Cup 8	B Cup SA	
	Front	of Tray	one and the first addition

				Tray	22		 	
Cup	12D	Cup	90					
Cup	10B	Cup	12C					
Cup	104	Cup	7D					
Cup	70	Сир	98					
			Fr	ont o	f Tr	.ay		

Number of organisms for each cup checked by_____

Environmental Consulting & Testing

1423 N. 8th St. Suite 118 Superior, Wisconsin 54880 (715)392-6635 fax (715)395-2463

Shipping Slip **
Metro Waste Dist.-RND

IL

No.

Shipping Date: 7/20/2009

Address: 6001 Pershing Road

Name:

From: ECT Superior, Wisconsin

City: Cicero State/Providence:

Zip: 60804

Phone: 708-588-4225

Species:

Fathead Minnow (Pimephales Promelas)

Date of Hatch:

7/20/2009

Number:

600

Temp at Shipping:

24.6

PO#

J. Yamanaka

8005771

SEND INVOICE WITH

Shipped By: Federal Express:

ECT Account

WATER CHEMISTRY RECORDS

Temperature	24 to 26	6 As	C°
Conductivity	90 to 12	20 As	UMHOS/CM
T. Hardness	50 to 80	0 As	CaCO3
T. Alkalinity	40 to 60	0 As	CACO3
pH	6.9 to 7	7.9	

RECENT REF. TESTS WITH NaCI

(Overall mean (s.d.) = 2.47 (1.03) g/l	n=42 *4.73 (1.02) g/l
n=75 (0.41 g/l to 4.53 g/l)	(2.69 g/l to 6.77 g/l)

2005

2005			
Jan. Chronic IC25 =	1.93 g/l	Acute (01 Day Old) LC50 =	4.02 g/l
Feb. Chronic IC25 =	1.90 g/l	Acute (01 Day Old) LC50 =	4.75 g/l
Mar. Chronic IC25 =	2.13 g/l	Acute (01 Day Old) LC50 =	4.75 g/l
Apr. Chronic IC25 =	1.50 g/l	Acute (01 Day Old) LC50 =	4.44 g/l
May Chronic IC25 =	2.02 g/l	Acute (01 Day Old) LC50 =	4.63 g/l
June Chronic IC25 =	1.60 g/l	Acute (01 Day Old) LC50 =	5.43 g/l
July Chronic IC25 =	2.22 g/l	Acute (01 Day Old) LC50 =	7.92 g/l
Aug. Chronic IC25 =	2.36 g/l	Acute (01 Day Old) LC50 =	7.14 g/l
Sept.Chronic IC25 =	2.41 g/l	Acute (01 Day Old) LC50 =	4.87 g/l
Oct. Chronic IC25 =	2.19 g/l	Acute (01 Day Old) LC50 =	7.14 g/l
Nov. Chronic IC25 =	2.07 g/l	Acute (01 Day Old) LC50 =	6.21 g/l
Dec. Chronic IC25 =	1.22 g/l	Acute (01 Day Old) LC50 =	4.24 g/l

^{*}Acute Toxicity Data extrapolated from Chronic Data

CONTROL CHART FOR CHRONIC REFERENCE TOXICITY TESTS PIMEPHALES PROMELAS (GROWTH-ON) - IC₂₅ REFERENCE TOXICANT (NaCI)

Note: Test number 22 was conducted concurrently with the chronic test on Hanover Park WRP. Test numbers 1-14, 16, 21 and 22 were conducted with hard synthetic water (HSW) with selenium, and test numbers 15, 17, 18, 19, and 20 were conducted with moderately hard synthetic water (MHSW) with selenium. Test numbers 1-19, 21 and 22 were conducted with fish from outside supplier. Test number 20 was conducted with fish raised in-house.

REFERENCE TOXICANT TEST RESULTS
REFERENCE TOXICANT- SODIUM CHLORIDE
TEST ORGANISMS: Pimephales promelas

Reference Toxicant Test Number Setup Date		Number Setup mg/L mg/L		MEAN+2S (mg/L) (UPPER CONTROL LIMIT)	MEAN - 2S (mg/L) (LOWER CONTROL LIMIT)		
1	02/25/04	3663	2808	5227	389		
2	03/10/04	3647	3087	5053	1122		
3	03/24/04	3420	3170	4810	1531		
4	04/07/04	3683	3273	4765	1781		
5	04/21/04	3901	3378	4807	1948		
6	05/05/04	3560	3404	4716	2092		
7	05/19/04	2251	3259	4722	1797		
8	07/07/04	3131	3245	4616	1874		
9	07/21/04	3944	3315	4681	1949		
10	08/18/04	3343	3318	4614	2021		
11	09/15/04	3264	3313	4549	2077		
12	11/03/04	3319	3314	4497	2130		
13	04/13/05	2500	3255	4473	2038		
14	06/08/05	1497	3138	4622	1655		
15	05/17/06	2511	3099	4566	1632		
16	06/23/06	2075	3039	4544	1534		
17	05/16/07	3927	3088	4607	1569		
18	06/08/07	1244	2991	4692	1290		
19	12/04/07	2480	2966	4637	1294		
20	07/10/08	1706	2906	4625	1186		
21	09/10/08	3037	2912	4591	1232		
22	07/22/09	3610	2942	4608	1276		

APPENDIX DII

QUALITY ASSURANCE FOR THE CERIODAPHNIA DUBIA WHOLE EFFLUENT TOXICITY TEST:
RAW DATA AND STATISTICAL CALCULATIONS
FOR THE CONCURRENT REFERENCE TOXICANT TEST,
CONTROL CHARTS, AND CULTURE DATA

Report Date:

12 Aug-09 10:37 (p 1 of 2)

Test Code: 07-2695-2159/2B5468DF

d Survival and Re	production Tes	t		MWRD of Greater Chicago
11-9359-7163	Test Type:	Reproduction-Survival (7d)	Analyst:	
22 Jul-09	Protocol:	EPA/821/R-02-013 (2002)	Diluent:	Hard Synthetic Water
29 Jul-09	Species:	Ceriodaphnia dubia	Brine:	Not Applicable
7d 0h	Source:	MWRD WET Lab In-house Culture	Age:	<24h
03-8149-6632	Code:	16BD2D38	Client:	
21 Jul-09	Material:	Sodium chloride	Project:	
21 Jul-09	Source:	Reference Toxicant		
24h	Station:			
	11-9359-7163 22 Jul-09 29 Jul-09 7d Oh 03-8149-6632 21 Jul-09 21 Jul-09	11-9359-7163 Test Type: 22 Jul-09 Protocol: 29 Jul-09 Species: 7d 0h Source: 03-8149-6632 Code: 21 Jul-09 Material: 21 Jul-09 Source:	22 Jul-09 Protocol: EPA/821/R-02-013 (2002) 29 Jul-09 Species: Ceriodaphnia dubia 7d 0h Source: MWRD WET Lab In-house Culture 03-8149-6632 Code: 16BD2D38 21 Jul-09 Material: Sodium chloride 21 Jul-09 Source: Reference Toxicant	11-9359-7163 Test Type: Reproduction-Survival (7d) Analyst: 22 Jul-09 Protocol: EPA/821/R-02-013 (2002) Diluent: 29 Jul-09 Species: Ceriodaphnia dubia Brine: 7d 0h Source: MWRD WET Lab In-house Culture Age: 03-8149-6632 Code: 16BD2D38 Client: 21 Jul-09 Material: Sodium chloride Project: 21 Jul-09 Source: Reference Toxicant

Comments: Hanover Park Concurrent Reference Toxicant Test.

Comparison S	Summary							
Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method	
21-2245-5110	7d Survival Rate	1750	2000	1870	N/A		Fisher Exact/Bonferroni-Holm Test	
03-0749-9407	Reproduction	<375	375	N/A	23.6%		Steel Many-One Rank Test	

Analysis ID	Endpoint	Level	Conc-mg/	95% LCL	95% UCL TU	Method	
18-2736-4510	Reproduction	IC25	344	210	487	Nonlinear Regression	

rest Acceptan	inty						
Analysis ID	Endpoint	Attribute	Test Stat	TAC Limits	Overlap	Decision	
21-2245-5110	7d Survival Rate	Control Resp	1	0.8 - NL	Yes	Result Within Limits	
03-0749-9407	Reproduction	Control Resp	32.8	15 - NL	Yes	Result Within Limits	
18-2736-4510	Reproduction	Control Resp	32.8	15 - NL	Yes	Result Within Limits	
03-0749-9407	Reproduction	PMSD	0.236	0.13 - 0.47	Yes	Result Within Limits	

7d Survival	Rate Summary										
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	10	1	1	1	1	1	0	0	0.0%	0.0%
375		10	0.8	0.643	0.957	0	1	0.077	0.422	52.7%	20.0%
750		10	0.7	0.52	0.88	0	1	0.0882	0.483	69.0%	30.0%
1750		10	0.8	0.643	0.957	0	1	0.077	0.422	52.7%	20.0%
2000		10	0.4	0.207	0.593	0	1	0.0943	0.516	129.0%	60.0%
3000		10	0	0	0	0	0	0	0		100.0%

Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Lab Water	10	32.8	31.5	34.1	28	36	0.625	3.43	10.4%	0.0%
375		10	21.7	17.5	25.9	0	30	2.06	11.3	51.9%	33.8%
750		10	16.4	12	20.8	0	27	2.13	11.7	71.3%	50.0%
1750		10	8.7	6.93	10.5	1	14	0.865	4.74	54.5%	73.5%
2000		10	1.6	0.665	2.53	0	6	0.457	2.5	156.0%	95.1%
3000		10	0	0	0	0	0	0	0		100.0%

000-015-170-3

CETIS™ v1.7.0

Analyst:_____ QA:____

Report Date: Test Code: 12 Aug-09 10:37 (p 2 of 2) 07-2695-2159/2B5468DE

07-2093-2139/2834000F

Cladoceran	7-d Survival and	Reproduc	tion Test						MW	MWRD of Greater Chicago			
7d Survival I	Rate Detail				1								
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
0	Lab Water	1	1	1	1	1	1	1	1	1	1		
375		1	1	0	1	1	1	0	1	1	1		
750		0	1	0	1	0	1	٦	1	1	1		
1750		1	0	1	1	1	1	1	0	1	1		
2000		1	1	0	1	0	0	0	0	1	0		
3000		0	0	0:	0	0	0	0	0	0	0		

Reproductio	n Detail .										
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Lab Water	28	36	35	28	33	34	35	36	28	35
375		30	28	0	27	26	29	6	30	12	29
750		0	21	0	25	0	26	22	26	17	27
1750		14	2	12	11	14	10	10	4	1	9
2000		6	6	0	1	0	0	0	0	3	0
3000		0	0	0	0	0	0	0	0	0	0

000-015-170-3

CETIS™ v1.7.0

Analyst:_____ QA:____

REFERENCE TOXICANT: NaCl	Analysts: 3	James Kaehn	RTT TEST DATE	7.22-02	
Laboratory water (LW): MH Calibrated Thermometer: 80		SELENIUM (circle Beginning Test	Date 7-13-09	Approved by Biolog Time_/2:45pm_	jist I
Species: C. dubia Source:		Ending Test	Date 7-29-09	Time 12:45pm	
Age group of neonates 3pm Incubator I.D. A	Ceriodaphr	.1pm to 7am, or nia Tray # <u>10</u>	7am to 3pm D Test Tray Loca	ation Center Table	Right sid

mg/L				Dissolv	ved Oxygen	- mg/l							рН			
	0	24	48	72	96	120	144	168	0	24	48	72	96	120	144	168
Old LW	7,25	7.67	8.28	7.82	7.86	7.55	8.00	7.62	7,77	7.87	7.9.9	8.08	2.03	8.00	7.85	8.06
375	7.25.	1.85	3.36	7.96	7.87	7.69	8.01	7.74	7,87	7,99	7.94	8.07	8.04	8,21	7.99	8.14
750	7.63	193	8.34	8.05	8.10	7.71	8.09	7.86	8.06	7,99	7.96	8.11	10.8	8.24	8.01	8-19
1750	8.29	7.87	8.33	7.92	7.93	7,70	8.06	7. 85	8.06	7.96	7,92	8.14	8.21	8.23	8.00	8.18
2000	7.96	7.82	8-40	8,00	3.21	7.57	8.11	7.68	8.11	7.91	7.98	8.15	8,10	8.26	8.03	8,20
3000	8,21	1.86	8,36	7.98	8,23	7.77	8.12	7.89	8.11	7.94	7.96 3.40 de	8.12	8.03	8.24	8.01	8.23
Time	2:45m	2:10 m	2:10pm	2:10pm	210911	2.10Pm	2:107m	2:10 pm	2:45 2 pm		2:10pm		2:10pm	2210Pm	Z:10pm	2:10pm
Initials	JK	7K	JĖ	JK	14	J.F	25	JK	ント	JK.	JK	JE	7 15	7X	14	JK

end of

Measure DO & pH at test set-up and at the ender each 24 h exposure period combining 10 replicates for each test concentration and in the control after neonates are counted.

Ceriodaphnia dubia CHRONIC REFERENCE TOXICITY TEST DATA SHEET Reference Toxicant: NaCl Analysts: James Kaehn, ______, , Assay Date 7 - 22-0,9

	Cup No.			(accept		perature mperatu	e °C ire : 24-2	6°C)		mg/L	Cup No.			(accept		erature o		°C)	
CONTROL		0	24	48	72	96	120	144	168			0	24	48	72	96	120	144	168
	1A		25,1								2A		25.0						
lab -	1B			25.3						375	2B			24,9					
Water	1C				25.0						2C				24.7				
	1D	15.0				25.3					2D					25.0			
	TL	10					25.1				2E	25.3					25.1		
	1F							25.3			2.5	V				The state of		24.8	1 12/0/
	1G								25.1		2G								\$6 25.0
	1H								25.0		2H					THE RES			25.1
	11										2I								
	1J										2J								
	TIME	1:00 70	1:150-	1:15pm	1:15pm	1:1591	1:15pm	1:15pm	1:157-		TIME	1:00pm	1:15pm	1:15pm	1115pm	1:15pm	1:1571	1:15pm	1:15em
INIT	TIAL	JK	JK	JK	SK	JK	JK	عاد	JK	INI	TIAL	1K	JIC	JK	Je	JR	JIZ	JK.	34

mg/L	L Cup				Tem	perature	°C		10000	mg/L	Cup				Tempe	erature °	C		
	No.			(accept	table te	mperatu	re: 24-2	6°C)			No.			(accept	able tem	perature	: 24-26	°C)	
		0	24	48	72	96	120	144	168			0	24	48	72	96	120	144	168
	3A		25.0	1						1750	4A		25.3						
750				25.0			-		•		4B			25,0					
	3C				25.0						4C				24.8				
	3 D					24.8					4 D	١.				75.1			
	3E	25.					25.0				4E	25.1					25.0		
	3F							25.1			4 F							25.1	
	3G								24.8		4G								24.8
	3H								24.8		4 H								25.0
	31	1									41								
	3J										4J								
	TIME	1:0025	1:15pm	1:152m	1:15pm	1:15pm	1615pm	1:15pm	1:15pm		TIME	1:00	1:15pm	1:15pm	1:15Pm	1:15ph	1:15pm	1:15 pm	1:15pm
	INITIAL	sve	JK	JK	34	276	JK	JK.	7K	INI	TIAL	1k	1K	JK	JE	Jk	JK	JK	JK

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO Ceriodaphnia dubia CHRONIC REFERENCE TOXICITY TEST DATA SHEET

Reference Toxicant: NaCl Analysts: James Fach, ____, Assay Date 7-22-09

mg/L	Cup		-	107	Tempe	rature °C				mg/L	Cup				Temp	erature o	C		
	No.			(accepta	ble temp	perature	: 24-260	C)						(accepta	able ten	nperature	e: 24-26	°C)	
		0	24	48	72	96	120	144	168		No.	0	24	48	72	96	120	144	168
0000	5A		25.1							2000	6A		25.3						
2000	5B			25.0						3000	6B	1		25.2					
	5C				24.8						6C				24.8				
	5D					25.0					6D					25.0			
	5E	15.3					24.8				6E	25.1		and the			25.1		
	5F	13.						24.8			6F					N. ST.		25.0	
	5G								25.0		6G			7 14					25.1
	5H								25.0		6Н		12.5			39/1			25,0
	51	***									6I					134			
	5J										6J								
	TIME	1:000	1:15pm	1:15m	1:1574	1:15pm	1:15pm	1:15pm	1:15 PM \$15000 SK 7129 0.9		TIME	1:00	1:15pm	1:1500	1:150	1:15pm	1:15pm	1:1500	1:150
INI	TIAL	7.4	21-	J*-	1K	リド	X	JK	7 K-415510'S	INI	TIAL	7K	JK	JK		JK	JK	JK	JK

Comments:

NEONATES	(TIME	;	3pm -	llpm	
TRAY # 10				1	

BIRTH DATE: 7-22-09

WATER SOURCE: LW (DATE: 7-13-09)

C. dubia
Tray No: 10D
Birthdate: 9-22-09
Water Source: FM
HSW Date: FCS

NEONATES (TIME : TRAY # BIRTH DATE: WATER SOURCE: LW (DATE:

> CHRONIC-CD-RT REV. 5 7/29/04

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

mg/l	Cup No.			N		nber of s Produc	ced	3	3 Broods				Adult S	Survival			
Parent Cup*		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168
7	1A	0	0	5	5	10	13	0	23	1	1	1	1	1	1	1	1
Lab 22	1B	0	0	7	0	12	17	2	36	1	1	1	1	1	1		1
Water 26	1C	0	0	6	0	13	16	0	35	ı	1	1	1)	1	1	1
27 28 30	1D	0	0	4	0	-) (13	0	28.	1	-1	1	1		1	1	ı
28	1E	0	0	5	0	13	15	0	33	1	I	1	1	1		1	1
30	1F	0	0	6	0	11	17	0	34	1	1	1	1	1	1	1	1
34	1G	0	0	6	0	12	17	6	35	1		1	1	1	1	1	1
34 35 39	1H	O	O	6	0	13	17	15	36	1			1	١	1	1	1
39	11	O	0	5	0	1.1	12.	13	28	1	1	1	}	1	1	1	1
42	1J	0	0	5	0	13	17	9	35	1	1.	1	1	1	1	1	1
TOTAL		0	0	55	0	119	154	36	328	10	10	10	10	10	10	10	10
TIME		2:15m	2:15pm	2:152m	2:15pm	2:15pm	2:15~	2:15m.	2:15pm	12:45 pm	12:45	12:43~	12:45pm	12:45	12:45	12:45 PM	12:45
INITIA	L	>K	-۱ <i>ا</i> د	74	71	フド	-VC	1K	ンド	1K	7K	×	JK	JK.	71,-	1K	JK

mg/l	Cup No.			Numb	er of Ne	onates F	Produce		about 6				Adult S	Survival			
NaCl		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168
	2A	0	0	6	O	10	14	0	30	1	1	1	1	1	١	1	1
375	2B	0	0	5	0	9	14	7	28	1	1	1	١		1	1	1
	2C	0	0	0	O	0	0	0	0	1	1	1	0	0	0	0	0
	2D	0	0	4	0	11	12	0	27	1	1	1	1	1	1	1	1.
	2E	0	0	4	0	10	12	0	26	1	}	1	1		1	(1
	2F	0	0	6	0	11	12	0	29	1	3	1	1	i	1	1	
9	2G	0	0	6	Ö	0	0	0	6	1	1	1	1	0	0	0	0
	2H	0	0	6	0	10	14	11	30	1	1	1	١	1	1.	1	1
	21	0	0	1	0	0	11	0	12	1	1	1	1	1	1	1	(
	2 J	0	C	5	O	10	14	0	29	1	1	1		1		1	
TOTAL		0	0	43	0	71	103	18	217	10	10	10	9	8	8	8	8
TIME		2:20 pm	2:20m	2:20m	2:20pm	2:10	2:20,0	·2:20pm	2:20pm	12:U 5m	12:45	12:45	12:50	12:50	12:2m	12:50	12:50pm
INITIA	L	7K	-J.K	71-	7.1	74	JK	7k-	ッド	71/-	J/-	11	-74-	1×	11	JIL	JK

At test termination all observations on test organism survival and numbers of offspring should be completed within 2 hours. Any animal not producing young neonates should be examined to determine if it is male after day 7 of the test. Check with Biologist I to observe test organism on a microscope slide.
*For tracking test organisms to brood board tray.

Ceriodaphnia dubia CHRONIC RTT TOXICITY TEST DATA SHEET

Reference Toxicant: NaCl Analysts: James Kachu, _____, ____ Assay Date 7-22-09

mg/l	Cup No.					nber of s Produce	ed		3 Browls				Adult S	Survival			
NaCl		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168
	3A	0	C	0	0	0	0	0	0	1	1	1	(0	O	0	0
750	3B	0	0	3	Ô	8	10	0	21	1	1	1	1	1	1	1	1
	3C	0	0	0	0	G	0	0	0		1	1	1	0	0	0	0
	3D	0	ô	4	0	9	12	1	25		1	1	1	1	1	1	1
	3E	6	Ô	O	6	0	0	0	0	1	1	1	1	0	O	0	0
	3F	0	0	2	0	10	14	0	26	1		١	1	1	1	1	1
	3G	O	C	3	0	10	9	0	22	1	1	1	1	1	1	1	1
	3H	0	0	3	0	10	13	11	26	,	ſ	1	1	1	1	1	1
	31	0	0	2	0	7	3	0	17	1	1	1	1	1	1	1	1
*	3J	U	0	6	Ò	10	11	0	27	1	1	1	1	1	1	1	
TOTAL		0	0	23	0	64	77	12	164	10	10	10	1.0	7	7	7	7
TIME		2:75	2:75m	2:25	2:25pm	2:25pm	2:255	2:25m	2:25pm	12:45	1:000	1:00pm	1:00pm	1:00m	(:00pm	(:00	1:000-
INITIA	L	714	14	JK	1K	JK	1K	JK	JK-	UK	JK	1K	JIK	الد	¥i.	JINZ	JIE

mg/l	Cup No.			Numb	er of Ne	onates F	roduce		3 Browls				Adult S	Survival			
NaCl		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168
	4A	O	0	0	4	5	5	ð	14	1	1	1	1	1	1	1	1
1750	4B	0	0	0	2	0	0	0	2	1	1	1	1	1	0	0	0
	4C	0	0	0	2	6	0	4	17	1	1	1	1	1)	1	1
	4D	O	Ú	0	2	4	Ð	5	11	1	ì)	1	1	1	,	1
	4 E	0	U	0	2	5	7	0	14	(1	ı	1	1	1	1	1
	4 F	0	Ü	0	2	4	0	4	10	1)	1	1		١	1	١
	4G	0	0	0	1	5	4	0	10	1	1	1	1	1	1	1	1
	4 H	Ð	0	0	0	4	O	0	4	1	1	1	1		1	0	0
	4 I	0	Û	0	0	O	1	0	1		1	1		1	1	1	1
	4J	0	0	0	3	6	0	0	9			1	1	1	1	1	1
TOTAL	D	ð	0	Ö	18	39	17	13	87	10	10	10	10	10	J ship	8	8
TIME		2:30pm	5:30pm	2:30m	2:30~	2:30m	2:39	1.150 pm	2:30 pm	12:45 m	1:05pm	1:05m	1:05pm	1:05pm	Jim por	1:0524-	1:05201
INITIA	L	12	75	74	JK	7.	J.L	24	14	7.4-	7K	71	-JIC.	JY-	7K	214	71

DII-8

Reference Toxicant: NaCl Analysts: James Kachn, _____,

Assay Date 7-22-0,9

mg/l	Cup No.					nber of s Produce	ed	9	3 Broals				Adult	Survival			
NaCl		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168
	5A	0	0	0	0	2	0	4	6	- 1		1	1	1	1	1	1
2000	5B	0	0	0	Ð	3	0	3	6	1	1	1	1	1	1	١	i
	5C	0	0	0	0	0	0	0	0	1	١	١	1	(1	0	0
	5D	0	0	0	Ó	0	1	0	1	1	1	1	1		١	1	
	5E	0	C	0	0	0	0	0	0	\	D	0	0	0	0	0	0
	5F	0	0	0	0	0	0	0	0	١	1	1	1	0	0	0	O
	5G	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
	5H	C	0	0	O	0	0	0	0	١	1	. 0	0	0	0	O	0
	51	C	0	Ð	ð	0	0	3	3	1	1	1	1	1	1	1	1
	5J	0	0	0	0	3	0	0	0	1	1	1	1	b	0	0	0
TOTAL		0	C	0	0	5	1	10	16	10	9	7	7	5	5	4	4
TIME		5.35bm	2:35pm	·2:35pm	2:35pm	2:35pm	2:357	2:35pm	2:35 pm	12:45pm	1:10pm	1:10	1:10	1:10pm	1:19~	1:10	1:10
INITIA	L	SIC	JL	×	JK-	JŁ	JK	24	JK	JK	1K	JK	JK	JŁ	JE	JK	OK

mg/l	Cup			Numb	er of Ne	onates F	roduced						Adult S	Survival			
	No.								3 Broods								
NaCl		24	48	72	96	120	144	168	Total	0	24	48	72	96	120	144	168
	6A	0	0	6	0	D	0	O	0	1	1	0	D	0	0	Ó	0
3000	6B	0	0	0	0	Ô	0	0	0	l	1	0	0	G	0	0	0
	6C	0	0	0	0	0	0	Ð	Q	-1)	0	U	0	0	0	Ø
	6D	0	0	0	0	0	0	0	0	1	1	Ó	0	Ù	0	0	0
	6E	0	0	0	Ô	0	0	Ô	. 0	1	١	Û	0	Ò	0	0	0
	6F	0	0	0	0	O	Ð	0	0	1	١	0	0	U	٥	O	0
	6G	0	Ð	0	0	0	Ø	Ω	0	1	1	0	O	Ó	0	v	N
-	6H	0	0	0	0	0	0	0	0	1	1	0	Ó	O	0	Ø	0
	61	0	0	0	0	9	0	0	0	1	0	0	Ò	Ö	0	0	8
	6J	0	·>	0	Ů	Q ·	0	0	C	1	1	1	1	Ü	Ø	Ô	0
TOTAL		0	O	0	10	0	O	0	0	10	9	1	1	0	0	0	O
TIME		2:40m	7:40	2:40	2:49m	2:40 m	2:40m	2:40	2:49m	12:45	12:45	1:15pm	1:1500	1:150	1:130	1:15~	1:15pm
INITIA	L	JK	JK	14	714	7.4	7K	7.8	71	7K	-JK	JK	7K	JK.	7K	JK	VL V

CHRONIC RTT-CD

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

Ceriodaphnia dubia CHRONIC RTT TOXICITY TEST DATA SHEET

DATE: <u>7-22-09</u> Toxicant: NaCl Amount Algae Fed: O.lmL Amount YTC Fed: O.lmL

					JK 7/22/0.
Date	Algae Type / Harvest Date	Cell Concentration (cells/mL)	YTC/Thaw Date	Time Fed	Initials
722-09	S. capricornutum/7-7-09	3.39 × 107	4-22-09/2-21-09	12:45pm	JK
7-23-09	S. capricornutum/ 7-7-02	3-39×10	4-22-09/7-21-09	12:45pm	VK.
7-24-0,9	S. capricornutum/ 7-7-09	3.39×107	4-22-09/7-21-09	12:45pm	JK
7-25-09	S. capricornutum/	3.39 ×107	42209/7-21-09	12:45pm	JK
7-26-09	S. capricornutum/	3.39 × 107	4-22-07/7-24-09	12:45pm	٦٢
7-27-09	S. capricornutum/	3.39×107	4-12-09/7-26-09	12:45pm	K
7-28-09	S. capricornutum/ 7-7-9	3.39×107	4.22-09 7-26-09	12:45pm	٦١٢
NA -	S. capricornutum/				3K.

Gray Metal Table			*	Temperature (°C) / Light Readin	g**	20. pt	
Location	0	24	48	72	96	120	144	168
Wall	25.00 1/84.7	25.00 6/86.0	25.000/80.4	25.0°C/	24.2°C/-19.1	24.8°C/81.7	24.80 /14.8	25.0° C/72.5
Aisle	25.000/84.7	25.00/ 86.0	25.5°C/87.3	24.58/86.7	24.8°C/ 86.0	24.800/89.3	2480/76.1	25.0° 4/16/5

*Incubator Temperature (*Calibrated Thermometer # 45) / Light Record**/Intials:

**Light Meter (SPER Scientific Serial No.031443) Calibrated on $\frac{3}{2}$ / $\frac{4}{2}$ / $\frac{9}{2}$

Page 7

7-22-09

		· · · · · · · · · · · · · · · · · · ·		
			•	03 00
Date	Day 0 (/-2	2-/-09)	Day 7 (/	()
	CONDUCTI	VITY (Initials	JK)	
F1 Dilution water	(Reference ~0.534 mS)	0.566m5	1/2/03 - C - S 6 6 m D	0,568m S 0.
F7 C. dubia				
C. dubia 375 mg/l	(Reference ~1.210 mS)	1. 233mS	1,251 mS	
C. dubia 750 /mg/l	(Reference ~1.910 mS)	1.993mS	2.04 ms	
C. dubia 1,750 mg/l	(Reference ~3.63 mS)	3.61ms	3.61 mS	
C. dubia 2,000 mg/l	(Reference ~4.11 mS)	4.11 mS	4,21 m5	
C. dubia 3,000 mg/l	(Reference ~5.79 mS)	5.89mS	6.07 ms	
		ALINITY mg/L as		
	(InitialsJK)	(Initials.	JK)
Date	Day 0 (/	2_/_09)	Day 7 (7/-3	29/09)
Lab Dilution water	Day 0 (/-Z Titr. Calc.	112	JK 4 10 5.70 x 20	alc.
		RDNESS mg/L as		
	(Initials)	(Initia	ls)
Date	Day 0 (7/-23		Day 7 (7	29 09
Lab Dilution water			Titr. C	Calc.
	- UP A		A 10	

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO Ceriodaphnia

Water Reclamation Plant:Reftox Collection Date:07-21-09A

Number of treatments, including the Control(s):6

Number of replicates:10 Number of organisms per replicate:1

ORDER OF RANDOM PLACEMENT OF CUPS IN TRAYS

Tray 1

Cup 1C Cup 4A Cup 3B Cup 2G Cup 6A Cup 1H Cup 4B Cup 2H Cup 3I Cup 6F Cup 5J Cup 3D Cup 3F Cup 1D Cup 3G Cup 4C Cup 5C Cup 1G Cup CF Cup 5J Cup 6G Cup 1E Cup 4J Cup 6E Cup 6D Cup 2C Cup 2J Cup 3A Cup 4I Cup 5H Cup 3J Cup 1I Cup 2B Cup 4F Cup 5D Cup 1A Cup 5B Cup 6H Cup 6C Cup 3A Cup 1J Cup 3F Cup 4E Cup 5A Cup 5E Cup 3H Cup 1B Cup 4G Cup 2E Cup 4D Cup 6J Cup 3C Cup 3C Cup 3C Cup 4B Cup 6J Cup 3C Cup 5G Cup 6J Cup 6J Cup 4F Cup 3E Cup 1F Cup 2I Cup 2D Cup 6B

_____Front of Tray_____

Number of organisms for each cup checked by Erica Collins

() & or MORE REGINATION

CULTURE Date 7-10-09 Trayl 10C Mean Average Birth Day Total Deaths over FTW Generation Birth Date 7-10-09 Initials DATA Control Water Source ADULT SURVIVAL APPEARANCE NEONATES PRODUCED LIPIOS | Sa S M T W The F | Sa S M T W AAAAA 1 D 1 56 57 57 57 59 TOTALS en en en en en uf or on m 200

CERIODAPHNIA DUBIA

Date	Algae type	Harvest Date	Cell concentration cells/mL	YTC	Thaw date	time	intials
7-1009	S.CHRICCRNITUM	7-7-09	3-39 x101	4-22-09	1-7-09	2:32 PM	00
7-11-09	N	7-7-09	11	4-22-09	7-10-09	2:14 An	m
7-12-09	n	7-7-09	n	4-22-09	7-10-69	112c	SA
7-13-69	i.	7-7-09	1,	4-22-9	7-12-09	11:05/4	00
7-14-09	7/	7-7-69	1,	4-12-09	7-12-09	9:1800	00
7-15-09	21	7-7-09	``\	4-22-09	7-14-09	10:50A	80
7-16-09	11	7-7-09	7,	4-22-49	7-14-59	11:00An	90
7.17.09	S. capricornutum	1.7.09	3.39×107	4.22.09	7.16.09	8:5UAM	ag
7.18.09	1-	"	· · ·	4.22.09	7.16.09	9:00 Au	as
7-19-09	1,	7-7-09	11	4-22-09	7-17-9	1:4887	117
72009	N ₁	7-7-29	11	4-22-09	7-17-09	11:00An	Ph
7-21-09	N	7-7-09		4-22-09	7-17-09	2:35 M	M
7-22-09	١,	7:-7-29	V	4-22-09	7-21-09	4:18Ar	(n
	¥	TIME / TE	MPERATURE (°C) / Ligh 6302	HT READING マファド	c l m	ricked of	En V 23:08

FRI 168 CD SAT192 OF INF216 M MON72 M TWE 96 M WE 9120 M THW 44 M TWE 96 M WE 9120 M THW 44 M TWE 96 M WE 9120 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M THW 44 M TWE 96 M WE 9288 M TWO M TWE 96 M WE 97 M TWE 96 M WE 9120 M TWE 96 M TWE 96

ALTERNATE FOOD

DAILY COMMENTS Marked cups for neonates 7:20 am 7/22/09 Fed 730 Mg

METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO

CONTROL CHART FOR CHRONIC REFERENCE TOXICITY TEST CERIODAPHNIA DUBIA (REPRODUCTION) - IC₂₅ REFERENCE TOXICANT (NaCl)

Note: Test number 20 was conducted concurrently with the chronic test for Hanover Park WRP. Test numbers 1-10,12, 14, 17-18 and 20 were conducted with hard synthetic water (HSW) with selenium. Test numbers 11, 13-14 and 17 were conducted with moderately hard synthetic water (MHSW) with selenium.

REFERENCE TOXICANT TEST RESULTS REFERENCE TOXICANT- SODIUM CHLORIDE TEST ORGANISMS: Ceriodaphnia dubia

Reference T Number	oxicant Test Setup Date	IC ₂₅ mg/L	Cumulative Mean mg/L	MEAN+2S (mg/L) (UPPER CONTROL LIMIT)	MEAN - 2S (mg/L) (LOWER CONTROL LIMIT)
11/2	0.4.05.10.4	10.60	014	1407	132
1	04/07/04	1062	814	1497	
2	04/21/04	1089	860	1510	210
3	05/05/04	1049	887	1498	276
4	05/19/04	792	875	1445	306
5	07/07/04	930	881	1415	347
6	07/21/04	620	855	1385	325
7	08/18/04	981	867	1375	358
.8	09/15/04	597	844	1353	335
9	11/03/04	902	849	1337	360
10	04/13/05	729	840	1333	347
11	06/08/05	531	819	1303	336
12	05/17/06	512	800	1292	309
13	07/19/06	1004	812	1298	326
14	05/16/07	955	820	1297	344
15	06/09/07	1052	832	1307	357
16	06/17/08	456	814	1306	321
17	09/10/08	1114	828	1325	331
18	03/13/09	1018	836	1328	344
19	06/03/09	862	838	1318	357
20	07/21/09	344	817	1340	294
20	01121109	544	017	1510	