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NOTES FOR SEMINAR ATTENDEES

* All attendees’ audio lines have been muted to minimize background noise.
* A question and answer session will follow the presentation.
* Please use the Chat feature to ask a question via text to All Panelists.

* The presentation slides will be posted on the MWRD website after the
seminar.

* |ISPE has approved this seminar for one PDH. Certificates will only be
issued to participants who attend the entire presentation.
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Katya Bilyk is a Senior Associate for Hazen and Sawyer in Raleigh, North
Carolina. She received a bachelor of science degree in civil engineering
from Virginia Tech and a master of science degree in environmental
engineering from the University of North Carolina, Chapel Hill. She has
20 years of experience in the industry and focuses on wastewater
process design, modeling, and optimization. Ms. Bilyk is actively involved
in WEF activities related to these topics and has published and/or
organized more than 40 papers and workshops on nutrient removal. In
recent years she has used Python software to apply machine learning
and advanced data analytics to the water industry. She is a professional
engineer licensed in North Carolina, Virginia and New York.
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Overview



The NRRRF is Located in Raleigh, NC, Permitted To Treat 75
mgd, And Must Meet Strict Nutrient Limits

Annual Average, Load-Based TN
Allocation

e Current TN Allocation: 687,373 Ibs/year
e 3mg/L TN at 75 mgd

Quarterly average TP limit
e 2.0mg/L

Monthly average NH3-N limits

e 1.0 mg/L summer /2.0 mg/L winter

Stringent BOD5 limits




NRRRF Utilizes A 4-Stage Biological Nutrient Removal Process
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Real Time Process Control Programs Were Implemented in
2018 To Optimize Operations
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Real-time Process Controls Have Improved
Effluent Quality, Reduced Operating Costs, and
Automated Routine Decision Making

ABAC, Ammonia-load EQ, and Nutrient-Paced Carbon Feed

Reduction in

: Air demand Methanol Electrical Methanol .
TN Reduction reduction reduction number of savings savings Total savings
blowers
|_ 2.2 mg/lL > |_ |_ |_ 1-2250 hp |_ |_ |_
18 mgiL 10% >40% it $300,000/yr $200,000/yr $500,000/yr

T T




ROI for Raleigh Water on Real-time Process Controls <1 Year

* Real-time process controls
were implemented in 2017

* Instruments - $124,000
* Integration - $191,000
* Engineering - $0

‘ Electrical savings $300,000/yr

Chemical savings $200,000/yr

‘ TN reduction from 2.2 to 1.8 mg/L

‘ Nitrogen credits not used valued at $1.3M

» Total investment - $315,000

* ROl <1 year



Predictive Analytics Using Machine Learning Was Identified to
Improve Operational Efficiency During Wet Weather Events

e 75 mgd

e Average daily flow of 48 mgd

* Hydraulic capacity of 225 mgd

* Highest hourly flow recorded 184 mgd
« 32 MG EQ basin

* Aim of the project was to predict influent flows
72-hours in advance

. How can we best leverage our existing infrastructure
to optimize treatment during a wet weather event?

. How can we tie-in this program with other wet
weather management programs like secondary
clarifier guidance program?

Deliverable = ML-driven predictive tool Raleigh
Water interacts with via Power BI




Current Wet Weather Standard Operating Protocol

Put 2
it * Provides 1.6
ad_dltlo_nal MG of B0 per
primaries clarifier

online

Put any * Provides 6.4
it MG of EQ per
addltlon_al tank and 1-2
BNR basins are usually
online available

*If 24- hour
sustained flows >

Divert to EQ it

*Subject to SVI and
guidance program




Neuse River Resource Recovery Facility (NRRRF)
Secondary Clarifier Guidance Program
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Why did Other Strategies Fall Short?
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{
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Machine Learning Overview



Machine Learning is Well Suited for Creating Predictive
Tools because it can make Accurate Predictions without
Explicitly Being Programmed to Do So

e e e (L




Machine Learning is an Alternative to Traditional
Mechanistic Models

ML uses algorithms, assign weights
to independent variables, then
seeks to minimize error in
predicting a dependent variable

Clean, Prepare Test Data

* Uses open source computer & Manipulate Data
programming languages like
Python

* Used in many fields including
medicine, banking, finance,
physics, etc.




Examples
of Machine
Learning Tools

Plant B Aer SRT = 21,667

samples = 553
value = 0.292

Feature importance in XGBoost Regressor
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Common Types of Machine Learning Algorithms

Cache awareness and Regularization for

p . out-of-core computing avoiding overfitting
Artificial ,
1 Tino prunng ¢ Efficient
Intelligence wing o Q) =i
= S XGBoost
T AN tres buaing b
Ed | . ‘ ‘ ES capability
T g
Machine oo
Decision Trees Random Forest Models XGBoost

Learning

1 1
1 1
[ =
L p =
g convolution + max pooling
nonlinearity
| J
convolution + pooling layers fully connected layers  Nx binary classification

Recurrent Neural Network Convolutional Neural Network




Steps to Deploying a Machine Learning Model

Develop Develop

real-time user Connect all Review and
connectivity interface for data revise model
framework model pipelines periodically

Develop
Train the Optimize schema for
model model real-time

Obtain data
to train the
model

et e like SQL (Power Bl)




Early Explorations with Machine Learning Led to The Raleigh
Water Project




Raleigh Water Model
Development



Machine Learning Approach was Developed
to Predict Flow up to 72-hours in Advance

Past Influent Hour of Day Collection
Flow to System 100
NRRRF Improvements

& " : ,,b;-v ﬂ { 7
REE Streamflow

Used python machine learning algorithms to train a Challenge Only 30-60

i i Sustained flows meeting effluent minutes of
model to 6+ years_of influent flow data as a function of 184 mgd =L e
of explanatory variables. experienced during wet warning prior to

weather events this project




Used Exploratory Data Analysis Tools In Python To Select
The Right Variables For Use In This Model
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All Storms 200

Predicted with 10 n
Good Precision
by the Model
During Training

e 38 storms in 6+ years

e Accuracy is +/- 2.6 mgd
12-hours in advance

* Largest storms are 0 200 400 600 800 1000 1200 1400 1600 1800 2000
predicted the best, which Date
was the goal
J —UV flow (mgd)_12hrs_actual

---UV flow (mgd) _12hrs_pred




‘ Power Bl  NRRRF Influent Flow Prediction NRRRF Influent Flow Dashboard_v2 | Data updated 9/8/20 v @® new lock on ja
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Closest Predictions Rely More on Actual Streamflow Data and Farther Away
Predictions Rely on Predicted Streamflow and Rainfall Totals
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Model Deployment



Data Architecture

Power Bl
Step 5: Power Bl Visualization
." (Hourly updates)

Web Data

Step 1: Hourly Rain and
Streamflow Data

Azure Automated Workflow Pipeline

)

Step 3: Run ML Models

2
::
g

\\"~4

Plant Data

STubio

Step 4: Model Output to SQL

Step 2: Hourly Ignition Data

* Deployed 12/19 in test mode
 Finalized 7/20




Model Reliability and Maintenance of Automated Pipeline

Weather

Component i

Dark Sky
and NWS

Source

Reliability

USGS data

98.7%

Ignition
Data

Raleigh
Water

SQL Power Bl

Hazen Hazen
Same as Same as
Azure Azure

Automated
Machine
Learning
Pipeline

Hazen

99.95%

Cloud/Azure




Interactive Tool Raleigh Water
Staff Use To View Model
Results



Final Deliverable Has
16 Screens
1. Cover 8. Model QC Model prediction Sensitivity to Rainfall Amount
2. Inventory 9. Plant Ops
3. Model 10. USGS
prediction _
11. Precip
4. Model
sensitivity 12. XY
5. EqOps 13. Timeseries " Select flow above which Secondary Clarifier Guidance
to utilize E P t timate # SC
6. Secondary 14. Map oo S]eeesdg?jae ’
clarifier - — ErE———
guidance 15. InputWeights :
16. Inputs
7. Model A Monitor
performance USGS
L""J“‘"k M ,‘N‘ Streamflow




Model Prediction Screen — Updated Hourly
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Hydrograph Incorporated into Dashboard for Plant Staff to Refine
Operational Decisions Related to Wet Weather Management

‘ Power Bl NRRRF Influent Flow Prediction NRRRF Influent Flow Dashboard_v2 | Data updated 9/15/20
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Example of How the EQ Management Tool Works

Flow threshold set to 110 mgd. Flow threshold set to 120 mgd.

There is adequate capacity. Strategy is to divert
flows when Q > 120 mgd.

There is insufficient EQ capacity.




Secondary Clarifier Guidance Program Screen Allows Real-Time
Determination of Secondary Clarifiers And RAS Flow Needed

Secondary Clarifier Guidance @ -‘;: Raleigh Hazen
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Model Includes Sensitivity Analysis to Account for Uncertainty
In Rainfall Quantity and Timing




Model Performance



There Have Been 8 Major Storm Events Since the Model Was
Deployed in July 2020

250
 All well predicted
e Blue —observed

200 * Yellow — predicted 12-hours in
}' advance
* Wet weather EQ used 5 times

* Volume ranged 12.6 — 26.8 MG
* Never exceeded 32 MG

150

Observed and Predicted Flow (mgd)

100 \ h e Models errs on the side of
L | \L‘ ‘ ,'J L\J\ | \' being conservative
‘\J YV \ / \ ; 11/\ \y \\/ /""\‘ﬁ \' n A MN“ ﬁ * This is because 10+ hours away
50 ‘/ J‘[V | ‘\j\/ dl \/\ \/ /\J lj model depends more on predicted
' | streamflow and rainfall

* Model w/i 10 hours of event
depends more on actual streamflow
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Observation No. (instead of time - all storms shown together)




Model Accuracy Post-Deployment Has Been Very Good

Retrospective Look at Model Performance at Varying Lead Times

Lead Time (hr)

ENEN - 1 1 compare to actual

Observed and Predicted Influent Flow By Lead Time

flow

Lead Time (hr) =sss2s0 1

urricane
saias

J — 2

150

Aug 03, 12PM Aug 04, 128M Aug 04, 12PM Aug 05, 12AM Aug 05, 12PM

Model accuracy increases as time to event decreases.



Another Good Recent Prediction for a Recent 150 mgd
Wet Weather Event (6.7” Rain in 9 hours) Was Well Predicted

NRRRF Influent Flow Dashboard_v2 | Data updated 9/3/20 v
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Operators Used the Prediction to Implement their Wet
Weather SOP Beginning with PCs, BNRs, then EQ

Date Influent Effluent
Flow (mgd) | Flow (mgd)

Influent

T
o 9/1 106 69
N 9/2 68 61
4MI LL\VJ. I‘ A N
A — N 'S p wees e \\\\V_JMA\ 2 9/3 65 101
N \\\-\ // b B A4
9/4 53 51
| « Put 2 primaries online
| « Put 1 BNR basin online
L A « Utilized 17 MG of EQ
. B « Peak hour flow 148 mgd
.+ Peakhour SLR 54 Ib/d/sf
[ « Peak hour SOR 1500 gpd/sf




They Also Doubled RAS Flows, Put 6 SCs into Service, and
Their Strategy Left Some EQ Volume Still Available

32 MG EQ | | -

A“/X/\/v/ M \5bq

RAS Flow | [ SLR went from ~35 to
Doubled B - 54 Ib/d/sf peak hour




NRRRF Maintained Good Effluent Quality During This 6.7”
Rainfall Event

Date | Influent | Effluent Effluent | Effluent Effluent Effluent
Flow Flow TSS TP Ammonia TN
(mgd) (mgd) (mg/L) (mg/L) (mg/L) (mg/L)

8/31 54 48 BDL - 0.14
9/1 106 69
9/2 68 61 BDL 0.54 BDL 1.9 4.

5
5
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T
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©
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x 2
kS
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* 148 mgd peak hour flow
« 3.1 flow peaking factor
 6.77rain in 9 hours
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o

5 10 15
Hours Since Rainfall Began I
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A Few More Thoughts
On The Visualization |,

log scale

“The resultant model and Power Bl
dashboard are an extremely valuable
tool that provides utility staff near-
real-time visualizations of key data,
such as current operating
parameters and stream flood stages
as well as future flow predictions.

The tool provides an interactive

interface for quickly assessing

current conditions and planning

ahead for projected future

conditions, which assists with

making informed decisions, resulting EQ basin
in in greater efficiency and reliability —
in utilizing existing infrastructure, to Utilized
effectively manage wet weather 1 | ,
flows and continue to meet stringent ‘,r U B e
effluent limits.” - Raleigh Water 0k i - . ™ BEEINER T
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Summary



Lessons Learned from Deployment of Machine Learning at NRRRF

* NRRRF has realized TN Electrical Methanol Total
. . g . d 1 1 H H
S|gn|f|Cant Operatlng cost Reduction savings I-savmgs I-savmgs
savings with real-time szg"n%gbr L$soo,ooo,yr s200.000%r| | 550,000
Process controls

 Machine learning has

Predicted Flows
R —a new forecast &S
been utilized SUCCESSfU”y = =
to create a wet weather e
1\ A
woN N N/
""\I‘ :‘w \I I‘! \ r“l \\ i
Management too \ VY
\ | | |/ |
‘U/ '\I“," U .
Used machine learning to train a model to 6+ years During wet weather, plant staff use to tool to determine the
of influent flow data as a function of explanatory flow threshold above which to use equalization to minimize

variables. flow to the BNR process.




Important Considerations for Predictive Analytics Project
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Other Opportunities



Future Intelligent Water System Goals for WRFs

Wet weather

management
Optimize ’ Optimize

dewatering disinfection
Predict influent Long-term flow
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operations




Exploratory Questions: Is it possible to use machine learning
to predict the cake TS% as a function of past data trends? What
variables contribute to this prediction?
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How Would This Tool be Used In Real Life?




Machine learning can use the history
of the sludge to predict dewatering
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» Explored whether different
machine learning models
could be used to find an
empirical relationship
between explanatory
variables and dewaterability
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Exploration of Explanatory Variables to Predict %TS C)\

Parameters believed to potentially impact dewaterability




Random Forest Prediction was Most Accurate X

Parameter ‘ Unit
Mean Absolute Error ‘ % TS: +/- 0.4%




Key Variables Predicting Dewaterability and Their Relative
Importance




Sensitivity Analysis X







Comparing Two %TS Prediction Models and Their
Conclusions




Additional Machine Learning Applications Outside of WRFs

‘ Predicting sewer pipe deterioration

Water treatment optimization

Water supply predictions

e Predicting flood potential




Questions

Katya Bilyk
4011 Westchase Boulevard, Suite 300
Raleigh, NC 27607

kbilyk@hazenandsawyer.com

919-538-1276
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