

Metropolitan Water Reclamation District of Greater Chicago

## Welcome to the April Edition of the 2025 M&R Seminar Series

#### **NOTES FOR SEMINAR ATTENDEES**

- Remote attendees' microphones are muted at entry to minimize background noise.
   For attendees in the auditorium, please silence your phones.
- for attendees in the additionally prease shence your profiles.
- A question and answer (Q/A) session will follow the presentation.
- For remote attendees, please use "Chat" only to type questions for the presenter.
   For other issues, please email Pam to SlabyP@mwrd.org.
   For attendees in the auditorium, please raise your hand and wait for the microphone to ask a verbal question during the Q/A session.
- The presentation slides will be posted on the MWRD website after the seminar.
- This seminar has been approved by the ISPE for one PDH and approved by the IEPA for one TCH. Certificates will be issued only to participants who attend the entire presentation.

#### Steven C. Baytos, IV Water Reclamation Facility Superintendent City of Akron Water Reclamation Facility Akron, Ohio



Steve Baytos has been a Certified Wastewater Operator since 1998. He was promoted to Plant manager in Elyria, where he achieved his Class IV Certification in 2012. He also has a Class III Water Supply Certification. Steve has a Bachelor of Science in Environmental Science from Youngstown State University and a Masters of Public Administration from Ohio University. Currently, he is the Superintendent of the City of Akron's Water Reclamation Facility.

#### Joseph M. (Mike) Starkey, P.E. Project Manager Burgess & Niple



Mike rejoined Burgess & Niple in 2017 as a project manager. He previously was a member of the Burgess & Niple team from 1997 to 2006, before moving to Iowa for 11 years. He has a Bachelor of Science in Mechanical Engineering from West Virginia Institute of Technology. His background includes the design of water and wastewater plant improvements, pump stations, rate studies, funding and collections and distribution systems. He is experienced with a wide variety of municipal water and wastewater projects. Mike served as the Technical Lead / Assistant Project Manager for the BioCEPT Improvements Project.

# **B**&N burgessniple.com



Biological Chemically Enhanced Primary Treatment (BioCEPT) Compared to Traditional Activated Sludge Secondary Treatment During Wet Weather Flows Steve Baytos City of Akron Mike Starkey, PE Burgess & Niple

> METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO MONITORING & RESEARCH SEMINAR SERIES APRIL 25, 2025



#### Background

## Project Scope & Design Approach

Design & Construction Challenges

**Demonstration Testing** 

Results

# Consent Decree (CD)

- Akron is in the process of implementing its longterm control plan (LTCP) over a 19-year period to satisfy requirements of a consent decree by 2027.
- Estimated program cost is \$1.2 billion.
- Akron was required to construct a high-rate treatment system with biological component.
- Provide equivalent secondary treatment for all flows up to 280MGD.



# Consent Decree (CD)

- 25 of 27 projects are completed.
- Ohio Canal Interceptor Tunnel.
- North Side Interceptor Tunnel – being built.
- EHRT Enhanced high-rate treatment facility at the end of the OCIT. Legal process with alternate projects.



# **Original Treatment Capacities (2012)**



A Phased Approach (at WRF)



# **Current Process Capacities (2022)**



# Program Impact on Secondary Bypass

| Secondary Treatment Capacity (MGD)   | Bypass<br>Events<br>(No./Year) | Bypass<br>Volume<br>(MG/Year) |
|--------------------------------------|--------------------------------|-------------------------------|
| Original Configuration (110 mgd)     | 36                             | 962                           |
| Phase 1 Expansion: Minimum (130 mgd) | 33                             | 620                           |
| Phase 2: Enhanced LTCP (220 mgd)     | 5                              | 41                            |
| BioCEPT (280 mgd)                    | 0                              | 0                             |



#### Background

## Project Scope & Design Approach

## Design & Construction Challenges

#### **Demonstration Testing**

Results



South End: New Influent Channel, OLS Tanks, Influent Metering, & Flow Splitter Structure



# North End: BioCEPT Treatment Facility & Storm Detention Basin



# What is **BioCEPT**?

- BioCEPT is a high-rate, suspended growth contact wet-weather treatment process that combines:
  - Biological Contact Zone
  - Chemically Enhanced Primary Treatment (CEPT)
    - Primary settling with coagulant and polymer addition
    - Significantly increases effective surface overflow rate
- Goal is to provide treatment equivalent to Secondary Treatment.
  - BioCEPT Effluent Requirement per consent decree is  $25 \text{ mg/L CBOD}_5$  and 30 mg/L TSS.
  - E.coli limit at plant outfall is 126 MPN/100 mL

# **BioCEPT – The Process**



# **BioCEPT Treatment Facility**





#### Background

## Project Scope & Design Approach

## Design & Construction Challenges

#### **Demonstration Testing**

Results

## **Design & Construction Challenges**



# Design and Construction Challenges

## **Design Challenges**

- 1. Adding Biosolids ahead of CEPT
- 2. Building through the "HEART" of the Facility
- 3. Handling captured solids after an event

## **Construction Challenges**

- 1. Expedited Schedule
- 2. Soil Conditions

# Design Challenges: Adding Biosolids ahead of CEPT

- Evaluation of MLSS concentration and detention time
- Limited Volume of RAS available for treatment of wet weather flow without impacting secondary treatment process
- Used BioWIN modeling and worked with process
  design engineers for Step Feed Phase 2 Project
  - BioCEPT = 500 mg/L MLSS, 40 min detention
  - < 80,000 +/- Ibs of AS can be pumped to BioCEPT before negatively impacting secondary

# Design Challenges: Building through the "HEART" of the Facility

CCD #8 SRT Influent/By

# AN ORGANIZED & STAGED PLAN OF ATTACK

- 27 page of Sequence of Construction showing the 5 stages of flow through the construction project.
- Use of bulkheads and channel re-routes to achieve continuous flow through the plant during the different stages of construction.
- Coordination with Contractor



# Design Challenges: Dealing with Accumulated Solids within the CEPT Tanks



# Design Challenges: Dealing with Accumulated Solids within the CEPT Tanks



# **Tipping Buckets**



# **Tipping Buckets**





# **Tipping Buckets**



## **Construction Challenges: Expedited Schedule**

- Bid March 2019
  - Engineer's Estimate: \$68.5 million
  - Bid: \$60.8 million
  - Final Project Cost: \$68.3 million (Soil Conditions)
- Contractor: The Great Lakes Construction Co.
- Construction Management Team:
  - Accenture (formerly Anser Advisory) Lead Overall Construction Manager for Headworks & BioCEPT
  - G. Stephens Inc. Construction Manager for BioCEPT
  - B&N Design Engineer for BioCEPT
- Start Date: May 31, 2019
- Original Final Completion: Sept 29, 2021 (28 months)
- Fully Operational: December 27, 2021 (31 months)

## **Teamwork Makes the Dreamwork**

- Communication and Teamwork
- TGLCC, WRF Personnel, & CM all working towards the same end goal
- Owner coordinated with contractor over partial flow outages, wet weather events, and full flow outages
- Ohio Canal Interceptor Tunnel
- Outage Coordination

# Construction Challenges: Soil Conditions (increased Soil Anchors)

- Original Count: 540
- Original Design Load: 142
   KIPS
- Final Count: 1,255 (added 715)
- Final Design Load: 80 KIPS
- Schedule Impact: 132 days
- Total Cost Impact: \$2.9M





#### Background

## Project Scope & Design Approach

## Design & Construction Challenges

#### **Demonstration Testing**

Results

# **Demonstration Study**

- Twenty (20) total wet weather events triggered when plant flow >110 MGD
- Treatment Effectiveness Study
- Comparative Study
- Interim Reports 48-hours following receipt of data.
- Final Report due 60 days following last event.



# **Demonstration Study parameters**

#### **Field Parameters**

- Air Temperature
- Dissolved Oxygen (DO)
- Flow Rate
- pH
- Turbidity
- Water Temperature
- Total Chlorine Residual (as applicable)

#### **Treatment Effectiveness Study**

- Total Suspended Solids (TSS)
- Carbonaceous Biochemical Oxygen Demand (CBOD<sub>5</sub>)
- E. coli

#### **Comparative Study**

- Alkalinity
- CBOD<sub>5</sub>
- Chemical Oxygen Demand
- E. coli
- Phosphorus
- Soluble BOD (sBOD)
- Total Suspended Solids (TSS)
- Campylobacter
- Cryptosporidium and Giardia
- Salmonella
- Fecal Coliform
- Enterococcus
- Coliphage



# TREATMENT EFFECTIVENESS STUDY SAMPLING PLAN



|                                                             | Label |
|-------------------------------------------------------------|-------|
| Sampling Location                                           | Code  |
| BioCEPT Influent / Main Plant Primary Influent              | T1    |
| BioCEPT Effluent                                            | T2    |
| Combined, Disinfected BioCEPT Effluent and Main Plant       |       |
| Secondary Effluent at Outfall 001 (Only during disinfection | T3    |
| season)                                                     |       |

# **COMPARISON STUDY SAMPLING PLAN**



|                                                    | Label   |
|----------------------------------------------------|---------|
| Sampling Location                                  | Code    |
| BioCEPT Influent / Main Plant Primary Influent     | C1      |
| BioCEPT Effluent                                   | C2      |
| BioCEPT Effluent for bench top sodium hypochlorite | $C^{2}$ |
| disinfection                                       | C5      |
| Main Plant Secondary Effluent (602 location)       | C4      |
| Main Plant Secondary Effluent for bench top sodium | C5      |
| hypochlorite disinfection                          | C.S     |

# Sample Analyses



## **Issues / Challenges**

- Process a lot of samples in a short time.
- One full three round event produced 145 analytical results, in addition to 56 field data points.



## **Issues / Challenges**

- 24/7/365.
- Storms seem to happen early evening that results in test events late evening, early morning.
- Pathogen lab not normally staffed after hours for sample delivery.



#### Background

## Project Scope & Design Approach

## Design & Construction Challenges

#### **Demonstration Testing**

## Results

# Results

| Parameter                | Row 18<br>Performance<br>Criteria<br>30-day Average | BioCEPT Effluent<br>Average thru<br>Event #20 |
|--------------------------|-----------------------------------------------------|-----------------------------------------------|
| CBOD <sub>5</sub> , mg/L | 25                                                  | 6.3                                           |
| TSS, mg/L                | 30                                                  | 6.5                                           |
| E.coli,<br>MPN/100mL     | 126                                                 | <b>9.7</b><br>Geo Mean                        |
|                          |                                                     |                                               |

# **TSS Percent Removal**



Event No.

# **CBOD<sub>5</sub> Percent Removal**



Event No.

# sBOD5 Percent Removal

#### **Comparison of sBOD<sub>5</sub> Percent Removals**

BioCEPT Removal %

Traditional Secondary Removal %



# Pathogen results

- Both disinfected BioCEPT and Secondary Effluent (SE) statistically reduced the pathogens analyzed, some as much as a 5log reduction.
- BioCEPT "outperformed" the SE on coliphage, enterococci, *Cryptosporidium*, and *Giardia*.
- BioCEPT and SE performed similarly on Campylobacter, Salmonella, fecal coliform, and E. coli.
- Overall, the BioCEPT treatment system performed comparably to the parallel Activated Sludge Secondary Treatment process.



Enterococci

# Miscellaneous Photos: Influent Channel, Offline Storage & Transition Structure



# Miscellaneous Photos: Primary Settling and BioCEPT Influent Splitter Structure



# Miscellaneous Photos: BioCEPT Inlet Gates & Mixer



# Miscellaneous Photos: Polymer Feed Systems



# Miscellaneous Photos: Coagulant (PAC) Storage Tanks



# Miscellaneous Photos: CEPT Tanks Perforated Baffle Wall



# Closing thoughts...

- Overall, BioCEPT performed comparable to the WRF's activated sludge secondary treatment process.
- Soluble BOD reduction is indicative of the biological treatment occurring within the treatment process.
- BioCEPT under the correct conditions is a HRT system capable of providing the equivalent of secondary treatment for intermittent peak flows.
- The largest benefit of BioCEPT is that it can be started/stopped quickly for wet weather events without concern of how to keep needed biomass alive until the next event.

# THANK YOU! ANY QUESTIONS?



Steve Baytos City of Akron SBaytos@AkronOhio.gov

**B**&N burgessniple.com

121

Mike Starkey Burgess & Niple Mike.Starkey@BurgessNiple.com