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OVERALL SUMMARY 
 
 

This report summarizes a seven year investigation of the microbial communities within 
the Chicago Area Waterway System (CAWS). This study coincides with the Metropolitan Water 
Reclamation District of Greater Chicago’s (MWRD) efforts to implement disinfection and storm 
water reservoir control management. MWRD initiated construction disinfection facilities at the 
Calumet and O’Brien Water Reclamation Plants (WRPs), which were completed by the end of 
2015. Ultraviolet radiation based disinfection technology was implemented at O’Brien WRP, 
which was expected to kill harmful bacteria and pathogens released into the North Shore 
Channel and North Branch of the Chicago River. Chlorination and dechlorination based 
disinfection technology was implemented at the Calumet WRP. Furthermore, the Thornton 
Composite Reservoir (TCR), which is part of the Tunnel and Reservoir Plan (TARP) within the 
service area of the Calumet WRP, became operational by December in 2015. This tunnel system 
provides 7.9 billion gallons of storage and since its completion has captured more than 
11.0 billion gallons of combined stormwater and sewage from Calumet WRP that would 
otherwise have overflowed into the CAWS in rainy weather and high flow condition. 
 

Using molecular DNA sequencing techniques we characterized the bacteria found in 
water and sediment at 16 different sites across the CAWS for a seven years period (2013–2019). 
This analysis provides the most detailed investigation of microbial dynamics in an urban 
waterway ever attempted. In addition to helping us to understand how both the native and 
bacterial communities from various sources varied with weather and location, we were also able 
to quantify the impact of the two water quality improvement efforts taken up by the MWRD, 
providing an unparalleled opportunity to determine if these efforts reduced microbial 
contamination, but also whether they impacted native river water and sediment bacterial 
community structure and function. 
 
 
OS.1 GOALS AND OBJECTIVES 
 

The overall goal of this study was to both understand the native microbial composition of 
the CAWS and determine how the implementation of disinfection at the two WRPs and the TCR, 
which is associated the Calumet TARP system, affected microbial communities across the CAWS, 
including directly downstream of the two WRPs. We also examined the impact of dry and wet 
weather events and Combined Sewer Overflows (CSOs) on the microbial community. Other 
objectives included: 
 

• Identifying probable sources of bacteria found in the CAWS; 
 

• Characterizing the distribution of virulence associated genes across both space 
and time in the CAWS; 

 
• Characterizing the relationship between microbial communities and fecal 

coliform bacteria in dry and wet weather events, with and without CSOs; 
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• Characterizing the relationship between water chemistry and the community 
diversity and composition in the CAWS river ecosystem, 

 
The report also describes the CAWS-Fecal Indicator Bacteria (FIB) model. Using 

chemical data, climate data, and hydrology data model as inputs, we developed a model to 1) 
predict fecal indicator bacteria concentrations at any point along the CAWS, and 2) estimate the 
probability that fecal coliform density will exceed the regulatory standard. 
 
 
OS.2 METHODS 
 

In this study, we have employed molecular genetic analysis methods to track microbial 
diversity at 16 different sites covering the Calumet River System, North Chicago River, Main 
stem, South Branch Chicago river, and South Fork River System from 2013–2019. To better 
understand the microbial sources impacting the CAWS quality, we collected multiple sample 
types—river water, river sediment, beach water, effluent discharged from the two WRPs, raw 
sewage inflowing into the two WRPs, fish mucus and fish guts and water from Lake Michigan 
beaches. Samples were divided into two groups: 2013–2015 (pre-disinfection/pre-TARP period) 
and 2016–2018 (post-disinfection/TARP implementation period). 
 

In developing the CAWS-FIB model, we used both classical statistical methods and 
machine learning approaches. Machine learning is the subfield of computer science that allows 
computers to learn without being explicitly programmed. Each modeling approach was 
compared for accuracy in predicting fecal indicator bacteria and the probability of exceeding the 
regulatory standard. In addition, we attempted to identify the most important variables for 
predicting fecal coliform levels. 
 
 
OS.3 RESULTS 
 

Microbiome Analysis. Molecular characterization of bacteria from samples collected 
between 2013 and 2019 indicate that the CAWS maintains a diverse bacterial community, with 
more than thirty thousand species of bacteria in the water and sediment alone. The composition 
and diversity of this community is significantly regulated by variables such as weather (dry and 
wet events), the presence of CSOs, physicochemical water properties, and the presence of 
absence of a CSO. Sample type (sediment, water, etc.) and the location of a sampled site also 
produce distinct microbiome signatures, and importantly, disinfection applied to the WRPs had a 
significant impact on the microbiome. Key findings include: 
 

• Compared to the pre-disinfection period (2013–2015), in the four years post-
disinfection (2016–2019) we observed a sequential decrease of sewage and 
fecal indicator bacteria in both the final outgoing treated effluent and river 
water samples. These results suggest the ongoing disinfecting activity was 
effective in reducing sewage and fecal indicators bacteria discharge at both 
O’Brien and Calumet WRPs. 
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• Across the CAWS there was an increase in sewage indicator bacteria during 
the wet events (at sites both with and without the CSOs). However, with the 
implementation of Calumet TARP system, we observed a decrease in the 
sewage indicators in the Calumet region. These results are in agreement with 
the observations that CSO events in the Calumet Region were significantly 
lower following implementation of disinfection/TARP. This highlights the 
efficiency of Calumet TARP system which captured the CSO discharges in 
the reservoir. In the CAWS north (O’Brien WRP) also, we observed a 
significant reduction in the sewage indicators at the downstream sites in the 
years 2016–2019, which can be attributed to the disinfection process. 

 
• Metagenome sequencing data revealed a very low abundance (0–0.25%) of 

virulence associated genes in the CAWS sites across all the years of collection 
(2013–2019), which suggests that pathogenic bacteria are also low in 
abundance. However, this study cannot determine whether or not this could be 
associated with a reduced risk of disease in people who have surface water 
contact. 

 
Furthermore, the reduction in sewage associated bacteria following the 

disinfection/TARP implementation, demonstrated by the molecular analysis, was confirmed by 
the results of MWRD’s monthly fecal coliform plate counts. Fecal coliform concentrations in the 
treated effluent water were significantly lower in the post-disinfection/TARP implementation 
period (2016–2019) compared to the pre-disinfection/TARP implementation period (2013 to 
2015) at the O’Brien WRP and Calumet WRP. Fecal coliform concentrations were significantly 
lower in the 2016–2019 period compared to 2013–2015 in river water samples from the North 
Shore Channel and North Branch of the Chicago River sites downstream of the O’Brien WRP, 
Little Calumet River and Cal-Sag Channel mainstem sites below the Calumet WRP. Fecal 
coliform concentrations in the mainstem Chicago River and South Branch of the Chicago River 
were not significantly different between the pre and post disinfection/TARP implementation 
periods. This finding may be due to the distance of these sites from the WRPs, strongly 
suggesting fecal coliform concentrations at these sites are influenced by sources other than WRP 
discharge. 
 

CAWS-FIB Model. We found that none of the modeling approaches had satisfactory 
accuracy levels during model testing. The performance is likely related to the low, monthly, 
sampling frequency for fecal coliform, which limits the amount of data available for model 
training. However, we did produce an operational model with multiple functionalities and 
provided information that is critical for the success of future CAWS-FIB model development. 
For example, the results of our study suggest an artificial neural network model performed the 
best of all the algorithms examined. The model results also provided list of the most relevant 
explanatory variables influencing fecal coliform concentrations varied with site. 
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Improving the current CAWS-FIB model should start with collecting fecal coliform 
samples 50 times per water quality sampling site per month from March to October. The 
increased sampling frequency would also benefit the model by taking FIB samples during CSO 
(gravity or pumped) discharges. However, this monitoring frequency will be difficult to achieve 
in reality given the effort required. In addition, the CAWS-FIB model should be “re-trained” and 
“re-tested” on an annual-basis, thereby taking into account important, incremental changes in the 
system such as land use/land cover (LULC) and structural changes in the hydraulic system 
(e.g.,TARP). 
 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

TS-1 

TECHNICAL SUMMARY 
 
 

This report summarizes a seven year investigation of the microbiome associated with the 
Chicago Area Waterway System (CAWS). This includes characterizing the changes in the 
microbial community structure and function in water and sediment that associate with dynamics 
such as weather and the Metropolitan WRP District of Greater Chicago’s (MWRD) efforts to 
implement disinfection and storm water reservoir control management. MWRD initiated 
construction of two large disinfection facilities at the Calumet and O’Brien Water Reclamation 
Plants (WRPs), which were completed by the end of 2015 ahead of recreational season of 2016. 
Ultraviolet radiation-based disinfection technology was implemented at O’Brien WRP, which 
was expected to kill harmful bacteria and pathogens released into the North Shore Channel and 
North Branch of the Chicago River. The O’Brien WRP treats an average of 230 million gallons 
of wastewater per day (mgd), has the capacity to treat 450 mgd, and serves more than 1.3 million 
people within 143 square miles, making it the world’s largest ultraviolet disinfection facility. At 
the Calumet WRP, chlorination and dechlorination based disinfection technology was used. The 
Calumet WRP has a capacity to treat 400 mgd and serves a population of more than 1 million 
people in an area of about 300 square miles. Furthermore, as part of the Chicago area Tunnel and 
Reservoir Plan (TARP) that is designed to intercept the combined sewer overflow (CSO) 
discharges, the Thornton Composite Reservoir (TCR) in the Calumet WRP service area became 
operational in December 2015. This tunnel system provides 7.9 billion gallons of storage and 
since its completion has captured more than 11 billion gallons of combined stormwater and 
sewage from the Calumet WRP that would otherwise have overflowed into the CAWS during 
rainy weather and high flow conditions. 
 

Using metagenomic and amplicon DNA sequencing techniques we characterized the 
taxonomic and functional dynamics of the bacteria community from both water and sediment 
across 16 different sites (Calumet River System, North Chicago River, Main stem, South Branch 
Chicago River, and South Fork River) over a seven years period (2013–2019). This analysis 
provides the most detailed investigation of microbial dynamics in an urban waterway ever 
attempted. As well as helping us to understand how both the native and wastewater-associated 
bacterial communities from various sources varied with weather and location, we were also able 
to quantify the impact of the two water quality improvement efforts employed by the MWRD. 
This provided an unparalleled opportunity to determine if these efforts reduced wastewater 
associated microbial contamination, as well as determining the impact on the native bacterial 
community structure and function. As well as water and sediment from the rivers, we also 
collected water from Lake Michigan beaches, final disinfected effluent discharged from the two 
WRPs, raw sewage inflowing into the two WRPs, and the mucus and gut contents of fish living 
in the rivers, so as to understand the microbial sources impacting the composition of the CAWS 
microbial community. 
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TS.1 GOALS AND OBJECTIVES 
 

The overall goal of this study was to (i) characterize the temporal and biogeographic 
native microbial composition of the CAWS, (ii) determine the potential sources of bacteria into 
the CAWS, and (iii) determine the impact on these characteristics by the MWRD’s two major 
improvement efforts, i.e., disinfection at the two WRPs and the TCR capturing Combine Sewer 
Overflows (CSOs) in the Calumet WRP service area. In addition, this study aimed to explore the 
distribution of resistance and virulence associated genes across both space and time in the 
CAWS and build correlative models to predict bacterial burden (especially fecal coliform 
bacteria) across the CAWS in association with weather events. 
 

Our specific objectives include: 
 

1. To characterize the microbiota in CAWS water and sediment samples using 
16S rRNA amplicon sequencing, so as to characterize the community 
composition and alpha/beta diversity across 16 locations over seven years 
(including pre- and post-disinfection years). Please note that the sediment 
sampling was conducted from 2013–2018 and not for 2019. 

2. To determine the impact of dry and wet weather events on the microbial 
dynamics of the CAWS specifically upstream and downstream of the WRPs. 
We further attempted to catalogue the impact of the disinfection and TARP 
interventions during the dry and wet events across different CAWS sites, 
including the impact of stormflow events. 

3. To determine the correlation between fecal coliform data (CFU/100 ml) and 
16S rRNA amplicon and metagenomic species proportions. This was 
performed across wet, dry and CSO events at sites associated with the 
Calumet and O’Brien WRPs, main CAWS stem and the south branch. 

4. To characterize the probable sources of specific bacterial strains throughout 
the CAWS data, using the SourceTracker algorithm to assign Bayesian 
probability against both local environmental sources and those collected in the 
Earth Microbiome Project database. 

5. To identify functional gene dynamics (e.g., antibiotic resistance and virulence 
genes) and genotype-traits that associate with environmental and weather 
events, as well as those impacted by the MWRD interventions. 

6. To determine how microbial community dynamics correlated with changes in 
the physicochemical properties of the river water (e.g., pH, dissolved oxygen, 
nitrate, temperature, specific conductance, flow, ammonia, total organic 
carbon, turbidity, chlorophyll, and volatile suspended solids). Further, these 
physicochemical characteristics were used to define water quality indices that 
could be associated with changes in the microbiome. 
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7. To develop and test a CAWS-Fecal Indicator Bacteria (FIB) model to explore 
the applicability of using a data-driven modeling platform for predicting FIB 
concentrations in the CAWS. Using chemical data, climate data, and 
hydrology data generated by Duflow modeling as inputs, we explored the use 
of both classical statistical methods and machine learning (ML) algorithms to 
1) predict FIB concentrations at any point along the CAWS, and 2) estimate 
the probability that a predicted FIB density will exceed the regulatory 
standard for fecal coliform for a given set of environmental conditions. 

 
 
TS.2 METHODS 
 

In this study, we have employed genetic analysis methods to track microbial diversity at 
different sites covering the Calumet River System, North Chicago River, Main stem, South 
Branch Chicago river, and South Fork River System across the seven years period (2013–2019). 
For this we collected seven different sample types i.e., river water, river sediment, beach water, 
effluent discharged from the two WRPs, raw sewage inflowing into the two WRPs, fish mucus 
and fish guts, across different sites throughout the CAWS. All microbiome analyses were 
performed on sites upstream and downstream from the WRP and tributaries sites (86 – Grand 
Calumet River; 56 – Little Calumet River Upstream of WRP; 76 – Little Calumet River 
Downstream of WRP; 57 – Little Calumet River; 59 – Cal-Sag Channel; 43 – Cal-Sag Channel; 
96 – North Branch Chicago River; 112 – North Shore Channel Upstream of WRP; 36 – North 
Shore Channel Downstream of WRP; 73 – North Branch Chicago River; 100 from the main 
stem; 108 from South Branch Chicago river; and 99 from South Fork River System). 
 

In developing the CAWS-FIB model, we examined multiple machine learning 
approaches. Machine learning is the subfield of computer science that allows computers to learn 
without being explicitly programmed. Testing data for each of these sites were divided into two 
groups: 2013–2015 (pre-disinfection/pre-TARP period) and 2016–2018 (post-disinfection/TARP 
implementation period). We also compared the accuracy of the machine learning models to 
classical statistical methods. 
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TS.3 OVERVIEW OF KEY RESULTS 
 

Microbiome Analysis. The CAWS maintains more than thirty thousand bacterial taxa 
from the sampled water and sediment alone. The differences in microbial diversity are 
significantly associated with variables such as disinfection status, weather conditions i.e., dry and 
wet events with and without CSOs, sample type, site location (i.e., distance from the WRPs). The 
differences in microbial community structure are significant correlated with changes in the 
physicochemical properties of the river water. 

 
The microbial diversity (measured by alpha diversity indices) of the river water (at sites 

downstream of the WRPs) and treated effluent (post-disinfection) samples was significantly 
lower in the year 2016 compared with 2013–2015. This reflected a significant decrease in fecal 
indicator bacteria and microbial taxa associated with sewage. The microbial diversity of river 
water, sediment, sewage and treated effluent samples increased and remained stable from  
2017–2019 compared with 2016. 
 

The four years post-disinfection phase (2016–2019) demonstrated a sequential decrease 
in the proportion of sewage and fecal indicator bacteria in samples downstream of WRPs; a 
continued increase in the proportion of native river water associated bacteria was also observed, 
highlighting the ongoing impact of disinfection. 
 

Between 2014–2015, wet weather events, both with and without CSO discharge, were 
associated with a significant increase in the proportion of sewage associated and fecal indicator 
bacteria, including Acinetobacter, Arcobacter, and Bacteroides. Between 2016–2019, post 
disinfection/TARP implementation at Calumet, the proportion of sewage-associated and fecal 
indicator bacteria significantly decreased, while the proportion of Flavobacterium (a river water 
indicator organism) significantly increased, during wet weather events compared to 2014–2015. 
CSO events were also significantly decreased following TARP implementation. In the CAWS 
north (O’Brien WRP region) we observed a significant reduction in the proportion of sewage-
associated and fecal indicator bacteria downstream between 2016–2019. 
 

Fecal coliform plate count abundances significantly positively correlated with sewage-
associated and taxa traditionally identified as fecal indicator organisms. Taxa both positively and 
negatively correlated with the plate count abundances had significant different biogeographic 
distributions, suggesting that the presence of sewage-associated and fecal-indicator bacteria 
results in a decreased proportion of native river water-associated bacteria. 
 

Functional gene proportions from metagenomic data were significantly different between 
wet and dry weather events. Microbial communities within the CAWS river exploit unique 
anabolic and catabolic pathways to derive and store energy from the legacy organic compounds 
associated with historic pollution present in the water. The proportion of 30 virulence genes from 
potentially pathogenic bacteria was small compared to non-virulence associated genes (0–0.25% 
of all gene sequences). This suggests that pathogenic bacteria are also at low proportions (which 
validates the amplicon sequence data). 
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Fecal Coliform Plate Count Analysis. Applicable primary contact recreation designated 
CAWS waters are subject to general use water quality standards (Illinois Administrative Code 
Title 35, section 302.209) for fecal coliform, however the recreational season is considered 
March through November according to Effluent Disinfection standards outlined in Illinois 
Administrative Code Title 35, Section 304.224) which specify that 1) the geometric mean of 
five samples should not exceed 200 CFU/100 ml within 30 days and 2) no more than 10% of 
samples should exceed 400 CFU/100 ml during any 30-day period. These standards do not apply 
to incidental contact or non-contact recreational water. Because samples were collected monthly 
for assessment purposes, overall annual geomean to be less than 200 CFU/100 mL and the limit 
of 400 CFU/100 mL was used to evaluate the compliance. 
 

The geometric mean fecal coliform concentration in the river water and treated effluent 
water was significantly lower in the post-disinfection/TARP implementation period (2016–2019) 
compared to the pre-disinfection/TARP implementation period (2013 to 2015) at the North Shore 
Channel, North Branch of the Chicago River sites downstream of the O’Brien WRP and Little 
Calumet River and Cal-Sag Channel mainstem downstream of the Calumet WRP; this validates 
the 16S rRNA and shotgun metagenomic analysis results. Fecal coliform exceedances of 
400 CFU/100 mL occurred in almost all samples collected between 2013 and 2015, but were 
only found in a small fraction of samples collected in 2016–2019. 
 

CAWS-FIB Model. Model training and testing indicated that overfitting was a problem 
for the CAWS-FIB models. This meant that regardless of the approach used (ML or classical 
statistics-based), the models performed well when predicting fecal coliform density during 
training, but performed poorly during model testing. The overfitting is likely related to the low, 
monthly, sampling frequency for fecal coliform, which limits the amount of data available for 
model training. 
 

While the modeling approaches employed in this study fell short of consistently 
demonstrating acceptable predictive capabilities, we did produce an operational model with 
multiple functionalities and provided information that is critical for the success of future 
CAWS-FIB model development. Results of model tests showed that the ANN algorithm was the 
only model that produced reasonable fecal coliform concentration values. The ANN algorithm 
was also relatively robust in predicting the fecal coliform concentration in the CAWS despite of 
the limited sampling data available for model training and testing. The model results also 
provided a short list of the most relevant explanatory variables influencing fecal coliform 
concentrations. Thus the results of our study suggest the ANN model is the future algorithm of 
choice for the CAWS-FIB model as it outperformed the other three algorithms across most of the 
performance metrics. 
 

Improving the current CAWS-FIB model should start with collecting fecal coliform 
samples 50 times per water quality sampling site per month from March to October. The 
increased sampling frequency would also benefit the model by taking FIB samples during CSO 
(gravity or pumped) discharges. However, this monitoring frequency will be difficult to achieve 
in reality given the current monthly sampling regime. In addition, the CAWS-FIB model should 
be “re-trained” and “re-tested” on an annual-basis, thereby taking into account important, 
incremental changes in the system such as land use/land cover (LULC) and structural changes in 
the hydraulic system (e.g.,TARP). 
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1 MICROBIOME STUDY OF THE CHICAGO AREA WATERWAYS SYSTEM 
(CAWS) 

 
 
1.1 INTRODUCTION 
 

High quality fresh water is a fundamental natural asset which is being consistently 
undermined by human activities (Vörösmarty et al. 2010). With over half of the total population 
living in urban areas, urban waters act as a liaison between human activity and natural 
environment and therefore are mostly influenced by human interference (Sandra L. McLellan, 
Fisher, and Newton 2015). Microorganisms establish the quality of fresh water and for a long 
time have been utilized as markers of poor water quality due to their traceability to potential 
sources of contamination. For instance, Escherichia coli or coliform bacteria are broadly used to 
identify fecal contamination in drinking and recreational water (McLain et al. 2011). However, 
these tests heavily depend on the optimization of culture conditions in the laboratory and can 
generate both false negatives as well as false positives (McLain et al. 2011). Select pathogen 
Polymerase Chain Reaction (PCR)-based methods have also been used to characterize the 
CAWS microbial quality; however, these methods are limited in their ability to resolve the 
source of fecal and/or sewage contamination (Dorevitch et al, 2012; Rijal et al., 2003, 2009, and 
2011). These methods do not completely describe the diversity of microbial communities present 
in the CAWS. Molecular gene and genomic sequencing can augment, for qualitative analyses, 
typical culture-based methods that currently only detect approximately 8% of known microbes. 
 

Microbial communities can be characterized in terms of levels of diversity (e.g., richness, 
evenness), composition (which taxa are present), and functional potential (which protein 
encoding genes they have). Microbial diversity fluctuates with environmental factors that shape 
which bacteria can survive and thrive, such as temperature, nutrient availability, hydrology, 
metal contamination, and the myriad factors that control these properties (Zeglin 2015). Using 
molecular approaches such as 16S rRNA gene amplicon sequencing and shotgun metagenomic 
sequencing it is now possible to get a detailed profile of the taxonomic and functional 
composition of a microbial community. These approaches can help us to determine exactly 
which bacterial taxa, and which functional traits, are important in enabling a microbial 
community to respond to changes in the environment. These approaches have been used to 
explore riverine microbial communities in the past, however, many of these studies have 
employed a limited timeframe of investigation (e.g., only months or one year) and with no 
replicates to allow for appropriate statistical analysis (Eraqi et al. 2018; Van Rossum et al. 2015; 
Hu et al. 2014; Jackson et al. 2014; Read et al. 2015; Savio et al. 2015; Yongming Wang et al. 
2015). 
 

The microbial community in a river system, also referred to as a microbiome, can also act 
as a sentinel of change in the environment, exactly because it is so sensitive a biomarker of 
fluctuations in environmental parameters. Therefore, the microbiome can be used as a biomarker 
of pollution and other anthropogenic impacts, and potentially could be used to predict different 
risk variants for human health outcomes associated with the river system. An integral part of the 
urban water cycle is sewer infrastructure. Thousands of miles of pipes line cities as part of 
wastewater and stormwater systems. As stormwater and sewage are released into natural 
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waterways, traces of human and animal waste-associated microbes are also released, and by 
measuring these components scientists have been able to use such traces to reflect the sources 
and magnitude of fecal and sewage pollution in a system. The same paradigm can also be used to 
indicate the presence of pollutants, such as nutrients and chemicals. However, microbial traces 
associated with other components of a urban environment are also released when stormwater and 
sewage are allowed to re-enter the river system. Runoff from impervious surfaces delivers 
microbes from soils, plants and the built environment to stormwater systems. Further, urban 
sewer infrastructure contains its own unique microbial community seemingly adapted to this 
artificial habitat. 
 

Here we present the results of a 7 year investigation (2013–2019) to employ molecular 
microbial characterisation approaches to augment existing data on the presence of microbes in 
the Chicago Area Waterway System (CAWS). By employing 16S rRNA amplicon and shotgun 
metagenomic sequencing approaches, this study aims to determine the temporal and 
biogeographic patterns of the microbial community across the different areas of the CAWS over 
time. These approaches capture the whole microbial community and can be used to elucidate it’s 
functional potential (what nutrients the bacteria need to survive, how they process energy, what 
kind of xeno-chemicals they can degrade, etc.); they can also be used to infer the different 
sources of bacteria that find their way into the CAWS. Potential sources include effluent from 
WRPs, direct stormwater runoff, sediment resuspension, wildlife and combined sewer overflows 
(CSOs). In addition to investigating the microbial dynamics between different sites over the 
years, we have further focused on the impact of the MWRD’s efforts to provide a cleaner water 
system. 
 

MWRD implemented two disinfection systems in 2016 at the Calumet and O’Brien 
WRPs. At O’Brien, a UV based disinfection system was introduced; whereas at the Calumet 
plant a chlorination/dechlorination approach was implemented; both strategies have a common 
aim to disinfect the treated wastewater prior to its reintroduction into the CAWS. 
 

Another major initiative taken up by MWRD is the Tunnel and Reservoir Plan (TARP) 
System’s Thornton Composite Reservoir (TCR) that became operational by end of November in 
2015. The TCR in the Calumet WRP service area was constructed to capture the CSO discharge 
that otherwise flows into the Calumet river system. Our sampling strategy started in 2013 and 
continued through the end of 2019, as such we have two phases, pre-disinfection/TARP  
(2013–2015) and post-disinfection/TARP (2016–2019); the multiple years of investigation 
provide an opportunity for robust statistical interpretation of the impact of disinfection on the 
microbial community dynamics of both the native and introduced microbiome in the CAWS. The 
combination of microbiome sequencing along with the available fecal coliform quantitative data, 
provides us with a formidable dataset with which to characterize the water quality (in terms of 
fecal and sewage indicators and native microbial biomarkers) which could further guide the 
management decision of recreation use. 
 

To date, this is the first study to investigate the longitudinal and spatial impact of 
disinfection on the microbial ecology of an urban river (Drury, Rosi-Marshall, and Kelly 2013; 
Lu and Lu 2014; Wakelin, Colloff, and Kookana 2008). As the investigation was 7 years long, 
the project was divided into 3 phases: 
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Phase I aimed at understanding the microbial dynamics and source apportionment of 
16 sites in the CAWS during the baseline, pre-disinfection period (2013–2015). Approximately 
16.8 million high-quality 16S rRNA amplicon reads were generated from 891 CAWS samples 
collected between 2013 - 2015. No significant differences in overall microbial community 
dynamics, composition and structure were observed between the 3 different years, suggesting a 
stable riverine ecosystem. No significant difference were observed in species richness within 
each sampling location over time (either monthly or seasonally). However, sediment samples had 
significantly greater species richness than water samples. Microbial source tracking analysis 
suggested that while present, the probability that bacteria in the water and sediment of the 
CAWS originated from human stool was minimal, however, the percentage of potential 
apportionment did vary between sites and over time. As expected, wildlife-associated bacteria 
were a variable, but significant source of bacterial ‘contamination’ in the CAWS. 
 

Phase II comprised years 2016–2017, and also an increase in the different sampling types 
explored. Water and sediment sampling continued, but we also sampled treated effluent 
discharged from the O’Brien and Calumet WRPs, including the prior 3 years, so that a snap-shot 
of the impact of disinfection and TARP implementation could be observed. We used microbial 
data collected between 2013–2015 as the baseline (pre-treatment) for comparative analyses. By 
comparing all sample types across this transition, we observed that post-treatment years 
comprised significant differences in microbial composition for water, sediment, effluent, and 
sewage samples when compared to the pre-treatment years. The water, sediment and effluent 
samples demonstrated a significant decrease in microbial diversity in 2016, i.e., immediately 
post-disinfection; but diversity rebounded in 2017. A significant reduction of known sewage and 
human fecal indicators such as Acinetobacter, Cloacibacterium, Bifidobacterium, and 
Clostridiales was observed post treatment in both water and sediment samples, but only at sites 
immediately impacted by municipal wastewater discharge. 
 

Phase III includes an extension of the post-disinfection analysis through years 2018 and 
2019, as well as finalizing the analysis of all data across the 7 years of observation. This report 
further focuses on the role of rainfall on microbial diversity by investigating the impact of dry 
weather events, wet weather events without CSOs and wet weather events with CSOs on sites 
which are upstream and downstream of the two WRPs i.e., Calumet and O’Brien, as well as sites 
which are further downstream and the main stem of the Chicago river system. We further 
investigated whether the disinfection treatment and TARP modulate the microbial community 
structure during the wet events. The combined sewage overflow and stormwater events resulted 
in a significant increase in sewage microbes. However, in the post-TARP phase, we observed a 
limited increase in sewage indicators when compared to the pre-TARP phase as well as an 
increase in native river water bacterial indicators in the Calumet region. This is suggestive of less 
impacted/contaminated river water system after the implementation of the TCR in the Calumet 
WRP service area. This is also potentially a result of the significant reduction in CSO events as a 
result of the implementation of the TCR (Gallagher and Wasik, 2019). Molecular microbiome 
data were also correlated with fecal coliform data, providing validation of the molecular 
approaches against quantitative traditional analyses. We further investigated the abundance 
patterns of this fecal coliform correlated dynamic community structure across different sites of 
CAWS including 6 sites from Calumet River System (Calumet WRP), 4 sites from North 
(O’Brien WRP) River System and three sites (one each from main stem, South branch Chicago 
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river and South Fork River) of CAWSs during the dry weather events, wet weather events with 
and without CSOs. Using the results, we emphasize that microbes can be used as biomarkers for 
anthropogenic impact in these urban waters, with the implication that these microbial biomarkers 
have a great potential to be used to bio-indicators for water pollution. We also performed 
detailed correlation analysis between the physicochemical properties of the CAWS and the 
microbiome to characterize the relationship between water quality indices and the community 
diversity. We focused on physicochemical properties i.e., pH, dissolved oxygen, nitrate, water 
temperature, specific conductance, flow, ammonia, total organic carbon, turbidity, chlorophyll, 
fecal coliforms, and volatile suspended solids. We identified significant correlations (both 
positive and negative) between these indices and specific microbial taxa with the intent that the 
findings can be utilized to establish bioindicators for water quality. 
 
 
1.2 MATERIALS AND METHODS 
 
1.2.1 Assessing Microbial Community Structure in CAWS Samples over Seven Years 

Using 16S rRNA Amplicon Gene Sequencing 
 

We utilized 16S rRNA gene amplicon sequencing to characterize the microbial 
communities in CAWS samples during years, 2013–2019. We collected a total of 2,706 samples: 
292 effluent samples, 572 sediment samples, 749 water column samples, 92 sewage samples, 
472 (bottle, filter, equipment) blanks, and 219 fish samples (Table 1, 2). Sewage and effluent 
samples were collected from the two WRPs at O’Brien and Calumet (Figure 1, Table1). 
Disinfection processes were implemented in 2016 at the O’Brien (UV) and Calumet 
(chlorination/dechlorination) WRPs. In 2016, we also observed the phased implementation of the 
Tunnel and Reservoir Plan (TARP). Thereafter, we continued sampling treated effluent, water, 
and sediment samples both upstream and downstream of the two WRP sites (Table 1). 
Additional information on the number of river water and sediment samples that were processed 
by sampling site is included in Table 1. 
 

All CAWS locations were sampled monthly for water and sediment by surface grab 
sampling. Water samples were analyzed for physicochemical parameters including pH, water 
temperature, alkalinity, total suspended solids, ammonia, nitrate, phosphorus, total metals, 
dissolved metals, cyanide, phenol, and fecal coliform bacteria, while organic priority pollutants 
and nonylphenols were sampled semiannually and quarterly, respectively. Both pH and water 
temperature were measured at each site for all samples. 500 mL of water and 100 g of sediment 
was collected for microbiome analysis. Sediment samples were stored in polypropylene 
containers at 4C to be shipped to the lab for DNA extraction and analysis. Two hundred mL of 
water samples were filtered in duplicate using 0.22 Micron Mixed Cellulose Ester filter, and 
filters were aseptically transferred to the labeled sterile 50mL tubes and stored at -80C until 
transferred to the lab on ice for analysis. In the lab all samples were stored at -80C until thawing 
for processing. Sample collection was conducted by MWRD personnel. Detailed collection and 
processing protocols for water samples, effluent samples, and sewage samples and processing are 
described in Appendix D. Fish sample collection and processing are also described in 
Appendix D. 
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FIGURE 1 CAWS and WRP (*) sampling locations. Tributaries feeding to CAWS are in bold and 
upstream sites are in italic fonts. 
 
 
TABLE 1 Details of location for each site with reference to the two WRPs used in the microbiome 
analyses. 

 
A. CAWS North 

WRP O’Brien WRP Disinfected 
Effluent 

  UV Disinfected Effluent 

112 North Shore Channel (NSC) Dempster St ~1.5 Miles Upstream from O’Brien WRP 
36 North Shore Channel Touhy Ave. ~0.68 Miles Downstream from O’Brien WRP 
73 North Branch Chicago River Diversey Ave. ~6.5 Miles Downstream from O’Brien WRP 

B. CAWS North Tributary 

96b North Branch Chicago River Albany Ave. Tributary River Meets NSC~3.2 Miles from 
O’Brien WRP 

C. CAWS Main Stem 

100b Chicago River Main Stem  Wells St. Downtown Chicago River ~11 Miles from 
O’Brien WRP 

 

Site Address 

36 North Shore Channel @ Touhy Ave. 

43 Cal-Sag Channel @ Route # 83 

52 Little Calumet River @ Wentworth Ave. 

55 Calumet River @ 130th St. 

56 Little Calumet River @ Indiana Ave. 

57 Little Calumet River @ Ashland Ave. 

59 Cal-Sag Channel @ Cicero Ave. 

73 North Branch Chicago River @ Diversey 
Ave. 

76 Little Calumet River @ Halsted St. 

86 Grand Calumet River @ Burnham Ave. 

96 North Branch Chicago River @ Albany 
Ave. 

97 Thorn Creek @ 170th St. 

99 South Fork, South Branch Chicago River 
@ Archer Ave. 

100 Chicago River Main Stem @ Wells St. 

108 South Branch Chicago River @ Loomis St. 

112 North Shore Channel @ Dempster Street 
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TABLE 1  (Cont.) 

 
D. CAWS South Branch Chicago River 

108 South Branch Chicago River Loomis St. ~14.5 Miles Downstream from O’Brien WRP 
99 SF, South Branch Chicago River  Archer Ave. South Fork River (~Bubbly Creek receives Racine 

Avenue Pumping Station Discharge flow)  

E. CAWS Calumet River 

WRP Calumet WRP Disinfected 
Effluent 

  Chlorination/dechlorination Disinfected Effluent 

86b Grand Calumet River Burnham Ave. Upstream Tributary Meets Little Calumet River 
~4.4 Miles from Calumet WRP 

56b Little Calumet River Indiana Ave. ~1 Mile Upstream from Calumet WRP 
76 Little Calumet River Halsted St. ~1.3 Miles Downstream from Calumet WRP 
57b Little Calumet River  Ashland Ave. Tributary Meets Little Calumet River ~1.7 Miles 

downstream from Calumet WRP 

F. CAWS Cal-Sag Channel 

59 Cal-Sag Channel Cicero Ave. ~6.4 Miles Downstream from Calumet WRP 
43c Cal-Sag Channel Route #83 ~17.2 Miles Downstream from Calumet WRP 
 
a Miles for a site along the river which correspond to distance from WRP to the point the tributary joins the 

CAWS. 

b Sites on CAWS without influence from O’Brien and Calumet WRPs. 

c Sites sampled in 2014–2015 to document baseline conditions in the Calumet River System in the two years 
preceding completion of the Calumet TARP System’s Thornton Composite Reservoir. Sites also sampled in 
2017–2018 to document conditions in the Calumet River System in the two years following completion of the 
TCR in the Calumet WRP service area. 

 
 
TABLE 2 Total number of samples collected per sample type from 2013 to 2019. 

Year Effluent Sediment River 
Wet/
Dry 

 
Raw 

Sewage Controls Fish Spiked Plate 
Lake 

Bypass Beach Total 
             

2013 55 78 82 0 0 15 0 0 
   

230 
2014 72 84 133 54 9 56 0 

    
408 

2015 76 99 109 54 17 103 48 9 
  

7 522 
2016 41 104 106 44 19 82 47 

    
443 

2017 17 107 107 53 16 83 34 
 

55 2 
 

474 
2018 16 100 108 14 16 74 42 0 0 0 0 370 
2019 15 0 104 16 15 59 48 0 0 2 0 259 
Total 292 572 749 235 92 472 219 9 55 4 7 2,706 
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1.2.2 Amplicon based Microbial Community Sequencing Analysis 
 

The DNA was extracted from the samples using the protocol described in Appendix A 
(Protocol#1; (Marotz et al. 2017) and 16S rRNA gene was amplified using the protocol 
described in Appendix A as Protocol#2 (Minich et al. 2018). Briefly, the V4 region of the 
16S rRNA gene (515F-806R) was amplified with region-specific primers that included the 
Illumina flow cell adapter sequences and a 12-base barcode sequence. Each 25μl PCR reaction 
contained the following mixture: 12μl of MoBio PCR Water (Certified DNA-Free; MoBio, 
Carlsbad, USA), 10μl of 5-Prime HotMasterMix (1×), 1μl of forward primer (5μM 
concentration, 200pM final), 1μl of Golay Barcode Tagged Reverse Primer (5μM concentration, 
200pM final), and 1μl of template DNA (Thompson et al. 2017). The conditions for PCR were as 
follows: 94°C for 3 min to denature the DNA, with 35 cycles at 94°C for 45 s, 50°C for 60 s, and 
72°C for 90 s, with a final extension of 10 min at 72°C to ensure complete amplification. 
Amplicons were quantified using PicoGreen (Invitrogen) assays and a plate reader, followed by 
clean up using UltraClean® PCR Clean-Up Kit (MoBio, Carlsbad, USA) and then quantification 
using Qubit readings (Invitrogen, Grand Island, USA. The 16S samples were sequenced on an 
Illumina MiSeq platform with paired-end sequencing at the Argonne National Laboratory Core 
Sequencing Facility according to EMP standard protocols (Thompson et al. 2017). The average 
analyzed amplicon read length was 250bp. 
 
 
1.2.3 16S rRNA Gene Sequence Analyses 
 

For 16S rRNA gene analysis, the 40 million paired-end reads generated were first joined 
using join_paired_ends.py script followed by quality-filtering and demultiplexing using 
split_libraries_fastq.py script in QIIME 1.9.1 (Caporaso et al. 2010). Parameters for quality 
filtering included 75% consecutive high-quality base calls, a maximum of three low-quality 
consecutive base calls, zero ambiguous bases, and minimum Phred quality score of 3 as 
suggested in Bokulich et al., 2013 (Bokulich et al. 2013). Demultiplexed sequences were then 
selected for ASVs (Absolute Sequence Variants) picking using the DeBlur pipeline (Amir et al. 
2017). In the pipeline, de novo chimeras were identified and removed, artifacts (i.e., PhiX) were 
removed, and ASVs in less than 10 samples were removed for further analyses due to low 
representation. Additionally, we calculated good's coverage index in qiime2 to estimate 
completeness of sequencing depth. Good's coverage index was between 97 to 100% with average 
of 99.5% for the data indicating that the number of sequence reads was sufficient to capture most 
taxa in each sample. 81.2% of the samples ranged between 99 to 100% good's coverage. 
 
 
1.2.4 Statistical Analyses 
 
Analysis of the resulting biom files was completed in QIIME1.9.1, R3.4.2 (phyloseq and caret 
packages), and SourceTracker (in QIIME1.9.1) (Caporaso et al. 2010; Knights et al. 2011). As a 
first step, alpha and beta diversity was estimated between different sample types as well as year-
wise. Diversity, defined as the description of “the variety and abundance of species in a defined 
unit of study,” (Magurran, 2004) is a measure often used to describe the complexity of a 
community. Alpha diversity is defined as species richness (number of taxa) within a single 
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sample. Diversity indices applied to microbiota data consist of differing weights of two 
components, richness and evenness (Jost, 2006). Richness is a count of the number of different 
taxa observed in the community without regard to their frequencies, and evenness refers to the 
equitability of the taxa frequencies in a community. We here used Shannon and Inverse Simpson 
indices here. Shannon index equally weights richness and evenness while the Simpson index 
provides more weight to the evenness. Beta diversity, on the other hand, is defined as diversity in 
the microbial community between different environmental samples. Beta-diversity was 
determined using weighted UniFrac distance matrices (Lozupone et al. 2011). UniFrac is a 
β-diversity measure that uses phylogenetic information to compare environmental samples. 
UniFrac, coupled with standard multivariate statistical techniques including principal coordinates 
analysis (PCoA), identifies factors explaining differences among microbial communities. The 
Weighted UniFrac incorporates the ESV abundances when calculating shared/unshared branch 
lengths to calculate distance (Lozupone et al. 2011). The statistical significance of the 
differences in microbial alpha diversity (based on Shannon index) and beta diversity were 
assessed for significance using paired t-test and permutational multivariate analysis of variance 
(PERMANOVA), respectively (Anderson Marti J. 2014). Analysis of composition of 
microbiome (ANCOM) followed by Mann-Whitney U test was used to identify differentially 
abundant bacterial phyla, genera and ASVs in different sample types across different sampling 
periods (2013–2019) (p-value cut-off of 0.05 following Benjamini-Hochberg FDR correction) 
(Mandal et al. 2015). Spearman rank correlation and generalized linear models (GLMs) were 
used to establish association between the microbiome and other continuous variables in the 
metadata such as fecal coliform data using microbiomeSeq() 
(https://github.com/umerijaz/microbiomeSeq) and glm() 
(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm) packages in R. All 
the figures were generated using ggplot2() (https://github.com/tidyverse/ggplot2, lattice() 
(https://github.com/deepayan/lattice), reshape2() (https://github.com/hadley/reshape), phyloseq() 
(https://github.com/joey711/phyloseq) and microbiomeSeq() 
(https://github.com/umerijaz/microbiomeSeq) packages in R scripting language (https://www.r-
project.org/). Further, to identify the synergistic impact of physicochemical properties of water 
on microbial diversity, we used canonical correspondence analysis (CCA) and BEST analyses in 
microbiomeSeq() package in R. 
 
 
1.2.5 Dry and Wet Weather Monitoring 
 

Sampling was done during each of the following conditions during the pre- and post-
construction monitoring periods: 
 

1. Dry weather (<0.1-inch precipitation). Dry weather was defined by antecedent 
dry conditions for two days following a 0.25–0.49-inch event, four days 
following a 0.50–0.99-inch event, and six days following a >1.0-inch event. 

 
2. Wet weather without CSOs (>0.5-inch precipitation). Water sampling 

occurred within 12 hours of the end of the rain event. 
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3. Wet weather with CSOs. Water sampling occurred within 12 hours of the end 
of the rain event. 

 
The impact of rainfall on microbial dynamics of CAWS focused on six sites from 

Calumet Region, four sites from the O’Brien region, and one site each from the main stem, South 
Branch Chicago River, and South Fork River. Hence, please note that the microbiome analyses 
in this report does not cover all the dry, wet weather events with and without CSOs. We selected 
the microbiome samples from each year that met the categorical requirements for dry weather 
events, wet weather events without CSOs and wet weather events with CSOs by matching the 
dates of occurrence of the events. The dry and wet times are from the actual rainfall record 
maintained by the District. Selection bias was not checked, however samples were collected as 
part of the monitoring program criteria established for dry/ wet weather events and has been 
published in several of the District's research report publications—District Report No. 07-79 
Fecal Coliform Densities in the Chicago Waterway System During Dry and Wet Weather  
2004–2006; District Report Dry and Wet Weather Risk Assessment of Human Health Impacts of 
Disinfection vs. no Disinfection of the Chicago Area Waterways System (CAWS); District 
Report No. 11-43 The Chicago Health, Environmental Exposure, and Recreation Study 
(CHEERS) Final Report; and Gallagher and Wasik (2019). 
 
 
TABLE 3 List of samples selected for microbiome analyses of dry, wet weather events with and 
without the CSOs (with dates of sample collection) across the selected sites from the CAWS north 
region. 

 
CAWS North: Sites 96, 112, 36 and 73 

Year Dry Weather Events (E1) 

 
Wet Weather Events 
without CSOs (E2) 

Wet Weather Events 
with CSOs (E3) 

    
2013 4/8/13, 5/13/13, 6/10/13, 7/15/13, 8/12/13, 10/14/13 9/16/13 3/11/13 
2014 3/10/14, 8/11/14, 9/15/14, 10/13/14, 11/10/14 0 0 
2015 3/9/15, 4/13/15, 7/13/15, 8/10/15, 10/12/15, 11/9/15 0 0 
2016 4/11/16, 5/9/16, 6/13/16, 7/11/16, 8/8/16, 9/12/16, 

11/14/16 
3/14/16, 4/1/16 4/28/16, 5/11/16, 

5/12/16, 5/26/16, 6/23/16 
2017 3/13/17, 4/10/17, 5/8/17, 6/12/17, 7/17/17, 8/14/17, 

9/11/17, 11/13/17 
0 6/15/17 

2018 3/12/18, 4/9/18, 8/13/18, 9/10/18, 11/13/18 6/11/18, 10/8/18 5/14/18 
2019 5/13/19, 6/10/19, 7/15/19, 8/12/19, 9/9/19, 10/14/19, 

11/12/19 
4/12/19 5/1/19 
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TABLE 4 List of samples selected for microbiome analyses of dry, wet weather events with and 
without the CSOs (with dates of sample collection) across the selected sites from the Calumet 
region, Calumet: Sites 86, 56, 76, 57, 59, 43. 

Year Dry Weather Events (E1) 

 
Wet Weather Events 
without CSOs (E2) 

Wet Weather Events 
with CSOs (E3) 

    
2013 3/25/13, 5/28/13, 6/24/13, 7/29/13, 8/26/13, 

10/28/13, 11/25/13 
0 0 

2014 3/24/14, 4/28/14, 7/22/14, 7/28/14, 9/29/14, 
10/27/14 

4/15/14, 8/5/14, 11/24/14 5/21/14, 7/1/14, 8/22/14 

2015 3/23/15, 5/21/15, 5/26/15, 6/22/15, 7/27/15, 
8/14/15, 8/24/15, 9/28/15, 10/26/15, 11/23/15 

4/10/15, 6/11/15, 7/17/15 6/16/15, 7/14/15 

2016 3/28/16, 4/25/16, 5/23/16, 6/27/16, 8/22/16, 
9/26/16, 11/28/16 

7/25/16 0 

2017 4/24/17, 7/31/17, 8/28/17, 9/25/17, 11/27/17 5/11/17, 10/11/17, 10/23/17, 
10/25/17 

3/1/17, 3/31/17 

2018 3/26/18, 4/23/18, 5/29/18, 7/30/18, 8/27/18, 
9/24/18, 10/22/18 

5/15/18, 5/22/18, 11/26/18 0 

2019 3/25/19, 4/22/19, 7/29/19, 8/26/19, 11/25/19 5/28/19, 9/23/19 0 

 
 
TABLE 5 List of samples selected for microbiome analyses of dry, wet weather events with and 
without the CSOs (with dates of sample collection) across the selected sites from the main stem 
and south branch sites. 0-No samples collected. 

 
Main Stem and South Branch: Sites 99, 100, 108 

Year Dry Weather Events (E1) 

 
Wet Weather 

Events without 
CSOs (E2) 

Wet Weather Events with 
CSOs (E3) 

    
2013 3/18/13, 4/15/13, 5/20/13, 6/17/13, 8/19/13, 9/23/13, 

10/21/13 
0 11/18/13 

2014 3/17/14, 4/21/14, 5/19/14, 6/16/14, 7/21/14, 8/18/14, 
9/22/14, 10/20/14, 11/17/14 

0 0 

2015 3/16/15, 5/18/15, 7/20/15, 8/17/15, 10/19/15, 11/16/15 0 6/15/15 
2016 4/18/16, 5/16/16, 6/20/16, 9/19/16, 11/21/16 0 3/21/16, 3/25/16, 4/28/16, 

5/11/16, 5/12/16, 5/26/16, 
7/18/16 

2017 3/20/17, 5/15/17, 6/19/17, 8/21/17, 9/18/17 4/7/17 10/16/17 
2018 3/19/18, 8/20/18, 9/17/18, 10/15/18, 11/19/18 4/16/18 0 
2019 3/18/19, 6/17/19, 10/21/19, 11/18/19 8/27/19 4/15/19, 5/1/19, 8/19/19 

 
 
1.2.6 Assessing Microbial Community Structure and Function Across the CAWS Using 

Shotgun Metagenomic Sequence Data 
 

While 16S rRNA gene sequencing based data can provide phylogenetic information 
about the microbial community (i.e., who is there?), shotgun metagenomics aims at surveying 
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the entire genomes of the microorganisms present in an environment as opposed to single gene, 
therefore it can capture microbial community at higher resolution. Shotgun metagenomics is also 
less susceptible to the biases inherent to the target gene amplification and can identify dominant 
gene pathways (i.e., what is it doing?) that are present in each sample. Shotgun metagenomic 
data was generated using the DNA extracts following the Illumina TruSeq protocol. The 
sequencing was performed using a 2 × 100 bp sequencing run on the Illumina HiSeq2500. 
Paired-end metagenomic reads for 71 samples were quality trimmed using nesoni 
(http://vicbioinformatics.com/nesoni.shtml) with the following parameters; minimum length 
= 75, quality cutoff = 30, adapter trimming = yes and ambiguous bases = 0 
(https://github.com/Victorian-Bioinformatics-Consortium/nesoni). 
 

To assess the taxonomic diversity, trimmed data were analyzed using MetaPhlAn2 to 
profile the composition of microbial communities (bacteria, archaea, eukaryotes and viruses) at 
species level (Overbeek et al. 2014). A database of ~1M unique clade-specific marker genes 
identified from ~17,000 reference genomes were used in MetaPhlAn2, and BowTie2 was used 
for reference-based alignment of the reads (Overbeek et al. 2014). Functional profiling was 
performed using HUMAnN2 which identifies the species profile from shotgun data and aligns 
reads to their pangenomes, performs translated search on unclassified reads, and quantifies gene 
families and pathways. HUMAnN2 was used to regroup gene families to MetaCyc reactions 
(Franzosa et al. 2018). All the figures were generated using ggplot2() 
(https://github.com/tidyverse/ggplot2), lattice() (https://github.com/deepayan/lattice), reshape2() 
(https://github.com/hadley/reshape), phyloseq() (https://github.com/joey711/phyloseq) and 
microbiomeSeq() (https://github.com/umerijaz/microbiomeSeq) packages in R scripting 
language (https://www.r-project.org/). 
 
 
1.3 RESULTS AND DISCUSSION 
 
1.3.1 The Unique Microbial Composition of Different Sample Types 
 

Molecular sequencing approaches enable the survey of a large fraction of the microbial 
community in an ecosystem. The main driver for microbial communities is often the type of 
environmental medium they inhabit, but examining the within medium variation over time is 
essential to track dynamics. First, we measure communities using diversity, i.e., the number and 
proportional abundance of species in a sample, is measured as Alpha Diversity, which can be 
defined as species richness (number of taxa) within a single sample or the proportional 
distribution, or evenness, of the sample (Jost, 2006). We employed the Shannon and Inverse 
Simpson indices, which are positively correlated, but Shannon is weighted towards rare species, 
and Simpson weighted towards abundant species. Second, we characterize the difference in 
microbial community structure and composition between samples, known as Beta Diversity. 
Here we employed Bray Curtis and Weighted UniFrac indices that are weighted towards 
abundant species, and unweighted UniFrac that is weighted towards rare species. 
 

As expected (Sommers et al. 2019; Yu Wang et al. 2012; Jiang et al. 2006; Feng et al. 
2009; Payne et al. 2017), sediment samples, due to inherent complexity of this medium, had the 
greatest alpha diversity, which was significantly greater than any other medium; effluent samples 
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had the second greatest alpha diversity (Shannon and Inverse Simpson; p<0.05, Figure 2). Alpha 
diversity was not significantly different between river water, sewage, and beach water samples 
(p>0.05, Figure 2). Fish gut and mucus samples were the least diverse (p<0.05, Figure 2). No 
significant differences in terms of microbial diversity were observed between the effluent 
samples from O’Brien and Calumet WRPs (p>0.05, Figure 2). 
 
 

 

FIGURE 2 The alpha diversity analyses of CAWS samples collected from 2013–2019. The 
distribution of alpha diversity indices Shannon and Inverse Simpson for each sample type 
consolidated for all seven sampling years (2013–2019); the sediment samples are the most diverse 
followed by effluent and water samples, with fish-associated samples being the least diverse. This 
box and whisker plot demonstrates the quartile range (line) and outliers (dots) for each 
distribution. 
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Beta diversity was significantly different between sample types (weighted UniFrac; 
pPERMANOVA < 0.05, Figure 3). CAWS water column samples formed a distinct cluster along with 
beach water samples that separated from the other sample types (pPERMANOVA < 0.05). Sediment and 
effluent samples ordinated into two separate clusters. While, the alpha diversity (Figure 2), didn’t 
show any significant difference between water, sewage and fish associated samples, beta diversity 
was significantly different between the three sample types, and they ordinated differently 
(Figure 3). 
 
 

 

FIGURE 3 Beta diversity analyses of CAWS samples collected from 2013 to 2019. Non-metric 
multidimensional scaling (NMDS) plot based on the weighted UniFrac distance matrix showing 
clustering patterns of different sample types, i.e., beach water, effluent, fish guts and mucus, 
sediment, sewage and river water. The PERMANOVA p < 0.05 value suggest significant differences 
between the sample types. The water, sediment, effluent, and sewage samples form separate distinct 
clusters with clear and significant segregation (p < 0.05). 
 
 

We identified 8 microbial genera that were significantly different between the sample 
types using the Analyses of Composition of Microbiome (ANCOM) algorithm (Figure 4). 
 

Methylotenera was significantly enriched (Mann Whitney U, p < 0.05) in the water, 
sediment and effluent samples, and at greater proportion in the Calumet effluent compared to 
O’Brien. This genus is an obligatory methylamine-utilizing bacterium which has been reported 
to be enriched in the effluents from the sewage treatment plants where methanol-enhanced 
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denitrification is an important step (Mustakhimov et al. 2013). The enrichment of Methylotenera 
at Calumet compared to O’Brien may be due to the differential disinfection methodologies, 
however, we cannot validate this. 
 

Prosthetobacter was significantly enriched (Mann Whitney U, p < 0.05) in the effluent 
and river water. This genus is often isolated from activated sludge in wastewater treatment plants 
where it is known to utilize the algal metabolites (J. Lee et al. 2014). 
 

Arcobacter, Trichococcus, Delftia and Dechloromonas, all recognized sewage indicator 
genera, were enriched in the influent sewage samples at both Calumet and O’Brien and in the 
effluent; as well as river water to a lesser extent, probably reflecting their enrichment in river 
samples downstream of effluent sites. 
 

Emticicia was enriched in fish mucus, and is a known symbiont of parasitic ciliates living 
on fish (Sun et al. 2009). 
 
 

 

FIGURE 4 Analyses of Composition of Microbiome (ANCOM) between the different sample types. 
The figure shows a list of seven bacterial genera which significantly (Mann Whitney U, p < 0.05) 
differentiate the sample types with unique enrichment patterns. The statistical significance was 
tested in ANCOM using Benjamini-Hochberg FDR adjustments to p-values. The adjusted p-values 
(padj) are mentioned for each candidate taxa. 
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1.3.2 Microbial Composition of Incoming Sewage and Outgoing Effluent across the Seven 
Years (2013–2019) 

 
Sewage stands for the incoming wastewater that enters the WRPs and effluent stands for 

the outgoing disinfected discharge flowing out the WRPs. At both the WRPs, the sewage samples 
were characterized by dominance of phyla Proteobacteria (avg. 70.01%), followed by Firmicutes 
(avg. 12.31%) and Bacteroidetes (avg. 12.10%) (Figure 5). Phyla Actinobacteria and Fusobacteria 
were less than 5% abundant across all the years of sampling at both Calumet and O’Brien WRPs 
(Figure 5). Proteobacteria are a complex and diverse phylum that dominate most natural and man-
made environments, and have previously been identified as dominating sewage (Nascimento et al. 
2018). At genus level, both Calumet and O’Brien WRPs were dominated by Acinetobacter 
(Cal~18.31%, O’Brien~19.97%) and Arcobacter (Cal~ 17.63%, O’Brien~14.79%) across all the 
years (2013–2019) (Figure 6). These genera are not necessarily fecal associated and are treated as 
non-fecal component of the sewer systems, however, the organic matter present in sewer pipes 
provides an ideal energy source for this opportunistic microorganisms (S.L. McLellan et al. 2010). 
 
 

 

FIGURE 5 Stack plots showing compositional differences between the incoming sewage 
samples at Calumet and O’Brien WRPs collected from 2014–2019 at phyla level (raw sewage 
samples were not collected in the year 2013). The most dominant bacterial phyla are shown 
here with phyla less than 1% of relative abundance collapsed under one group for easier 
graphical visualization 
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FIGURE 6 Stack plots showing compositional differences between the incoming sewage samples at 
Calumet and O’Brien WRPs collected from 2014–2019 at genus level (raw sewage samples were not 
collected in the year 2013). The most dominant bacterial genera are shown here with phyla less 
than 1% of relative abundance collapsed under one group. 
 
 

Like the sewage samples, Proteobacteria dominated the effluent samples across all the 
collection years (2013–2019) (Figure 7). However, unlike the sewage samples where 
Bacteroidetes and Firmicutes were both almost equally abundant (~12%), Bacteroidetes was the 
second most dominant (~14%) followed by Firmicutes (~4%), (Figure 5, 7). 
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FIGURE 7 Stack plots showing compositional differences between the treated effluent samples at 
Calumet and O’Brien WRPs collected from 2013–2019 at phyla level. The most dominant bacterial 
phyla are shown here with phyla less than 1% of relative abundance collapsed under one group. 
 
 
 At the genus level, the effluent (like sewage) was dominated by Acinetobacter 
(Cal~7.52%, O’Brien~6.89) and Arcobacter (Cal~5.54%, O’Brien~3.74%), but also included 
Bacteroides (Cal~0.52%, O’Brien~0.51%) (Figure 8); all were significantly reduced 
(Mann Whitney U, p < 0.05) in the post-disinfection years (2016–2019). Both Acinetobacter and 
Arcobacter are well established sewage indicators and Bacteroides is also known to be 
associated with human-fecal contamination (Fisher et al. 2014; VandeWalle et al. 2012; 
Newton et al. 2015). These results thus highlight the efficiency of disinfection technology that 
was employed at both Calumet and O’Brien WRPs as well as the Calumet TARP system which 
reduced the number of CSOs significantly especially at the Calumet River system. Interestingly, 
Hydrogenophaga and Sediminibacterium were enriched in effluent at O’Brien compared to 
Calumet, and Flavobacterium significantly increased (Mann Whitney U, p < 0.05) in the post-
disinfection years (2016–2019) in Calumet effluent, but not in O’Brein, which may reflect 
different disinfection strategies. 
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FIGURE 8 Stack plots showing compositional differences between the treated effluent samples at 
Calumet and O’Brien WRPs collected from 2013–2019 at genus level. The most dominant bacterial 
phyla are shown here with genera less than 1% of relative abundance collapsed under one group. 
The post-disinfection years (2016–2019) are highlighted in ‘bold red’. 
 
 
1.3.3 Impact of Disinfection Implemented at Calumet and O’Brien Water Reclamation 

Plants on Microbial Dynamics of the CAWS 
 

Alpha diversity significantly decreased (t-test, p<0.05) in 2016 (the year of disinfection) 
for the sites downstream of the two WRPs (36 - 0.68 miles downstream of O’Brien; 73 - 6.5 
miles downstream of O’Brien; and 76 - 1.3 miles downstream of Calumet; Figure 9). However, 
alpha diversity also decreased significantly (t-test, p<0.05) in two sites in the South Branch 
Chicago River that were not impacted by O’Brien or Calumet (100 and 108 - >14 miles away 
from O’Brien; Site 99, which receives CSO during stormflow events from Racine Avenue 
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Pumping Station, showed no significant decrease in 2016 (Figure 9). For the sites upstream of 
the two WRPs (i.e., 56 and 112) and tributary sites with no direct influence from the WRPs 
(i.e., 96, 100, 86), no significant reduction of the microbial diversity was observed in 2016 post-
disinfection (Figure 9). Interestingly, sites 57 and 59 are downstream from the Calumet plant but 
showed no significant decrease in alpha diversity. 
 

Sites 36, 73 and 76 showed a significant increase in Alpha diversity in 2017 and 
remained stable through 2019. This observation remained consistent for the sediment as well 
with an exception of sites 100 and 108 which didn’t demonstrate any reduction of microbial 
diversity in 2016 (Figure 10). This increase in 2017 can be attributed to the capability of the 
microbial community to adapt to the changing environment with continued high growth rates. 
 

Between the sewage and effluent samples collected from Calumet and O’Brien WRPs 
overall, effluent samples were characterized by higher (t-test, p<0.05) microbial diversity 
(Figure 11). This can be attributed to the fact at the WRPs, the sewage is turned into activated 
sludge (before the disinfection treatment) which is basically an enrichment culture of 
microorganisms that can remove the biological oxygen demand and total suspended solids from 
the WRPs (Shchegolkova et al. 2016). This sludge undergoes processes such as aeration that 
leads to enrichment of sewage treatment-associated microorganisms, following which, the final 
disinfection process (UV or chlorination/dichlorination) could alter the microbial diversity of 
effluent samples (compared to the incoming sewage). Based on Shannon index, Calumet WRP 
effluent samples demonstrated a significant decrease (t-test, p<0.05) in microbial diversity in 
2016 as compared to 2015, followed by a significant increase in 2017 (t-test, p<0.05), Figure 11). 
Similarly, the effluent samples from O’Brien also demonstrated a significant reduction (p < 0.05, 
Figure 11) in microbial diversity post-disinfection, followed by a rebound. These results 
emphasize the efficiency of the disinfection process that was implemented in 2016 at both the 
WRPs. 
 

The compositional data (combined for post disinfection years i.e., 2016–2019) for water 
samples collected from immediate downstream sites of both WRPs (Calumet, Site#76; O’Brien, 
Site#36), showed significant differences compared to the pre-disinfection period (i.e., 2013–
2015) with sewage and fecal indicators reducing, highlighting the efficiency of disinfection. At 
both Calumet and O’Brien WRPs, we observed an increase (Mann Whitney U, p < 0.05) in 
fresh-water indicators such as Flavobacterium and a reduction in sewage indicators such as 
Arcobacter and Acinetobacter (Figure 12). 
 

At Calumet we also observed an increase (Mann Whitney U, p < 0.05) in ASVs 
belonging to Comamonadaceae and Pelagibacteraceae. Family Comamonadaceae is another river 
water indicator known to be found ubiquitously in river water habitats (Moon et al. 2018). The 
family Comamonadaceae is one of the dominant bacterial groups in river water environments. 
The family Pelagibacteraceae has also been reported to be abundant in river water systems with 
many studies focused on its strong seasonal variability in the river water systems (Heinrich, 
Eiler, and Bertilsson 2013). This can be attributed to both disinfection technology that was 
implemented as well as the TARP TCR in the Calumet WRP service area. 
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FIGURE 9 Alpha diversity analyses for water samples collected at different sites over a period of 
seven years (2013–2019). The distribution of Shannon diversity index is shown for the river water 
sites. The boxplots are grouped by sampling year. The sites with asterisks (*) in 2016 represent the 
comparisons between 2015 and 2016 that show statistical differences (t-test, p<0.05). Between the 
years post-disinfection, we didn’t observe any significant differences between 2017, 2018 and 2019. 
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FIGURE 10 Alpha diversity analyses for sediment samples collected at different sites over a 
period of six years (2013–2018). Please note that sediment samples were not collected for the year 
2019. The distribution of Shannon diversity index is shown for the sediment sites. The boxplots are 
grouped by sampling year. Between the years post-disinfection, we didn’t observe any significant 
differences between 2017, and 2018. 
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FIGURE 11 Alpha diversity analyses for sewage and effluent samples at Calumet and O’Brien 
WRPs. The distribution of Shannon diversity index is in the form of boxplots. The boxplots are 
grouped by sampling year. 
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At O’Brien we observed an increase in Leadbetterella post-disinfection which is another 
river water-associated bacteria that has been reported from Lake Michigan (Chopyk et al. 2018; 
P. O. Lee et al. 2015) (Figure 12). Therefore, we identified additional river water indicators 
which increased significantly post-disinfection (Mann Whitney U, p < 0.05) in the downstream 
waterways of WRPs with a further reduction in fecal indicators. 
 
 

 

FIGURE 12 The sewage and wastewater microbes decrease significantly post-disinfection 
compared to pre-disinfection at the downstream sites for the O’Brien (Site#36) and Calumet 
(Site#76) WRPs. The river water microbes increase significantly post-disinfection. A few of the 
indicators for sewage like Acinetobacter, and human fecal material like Arcobacter, further reduce 
significantly. This figure shows list of statistically differential bacterial genera with Benjamini-
Hochberg FDR corrected p-values (< 0.05) labelled for each taxon. Note that Figure 12 represents 
ESVs (sub-species level assignments) but many of these can only be annotated (due to the short 
length of the 16S rRNA fragment) to a genus or family, hence different ESVs can have the same 
annotation. 
 
 

At sites immediate downstream of the plants, i.e., Site#36 (North Shore Channel) at 
O’Brien and Site#76 (Little Calumet River) at Calumet, we observed that river water indicators 
(e.g., Commamonadaceae, Pelagibacteraceae, Flavobacterium, and Polynucleobacter) continue 
to increase proportionally during the post-disinfection phase and sewage/fecal indicators 
(Arcobacter, Acinetobacter, Cloacibacterium, Bacteroides, Trichococcus etc.) continue to 
decrease (2016–2019; Figure 13). In addition to the fresh-water indicators, we also observed an 
increase (Mann Whitney U, p < 0.05) in genera such as Dechloromonas and Hydrogenophaga at 
Site# between 2015 and 2016 (Figure 13). Hydrogenophaga has been identified as a 
heterotrophic bacterium which can utilize carbon under aerobic conditions and under anaerobic 
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conditions through a denitrification metabolism and has been previously isolated from the 
activated sludge at wastewater treatment plants (Hoshino et al. 2005). The genus Dechloromonas 
is capable of reducing perchlorate and chlorate, which is associated with nitrate reductase. 
Moreover, Dechloromonas is frequently reported as a phosphate accumulating organism in 
enhanced biological phosphorus removal reactors (Y. Liu, Zhang, and Fang 2005). 
Dechloromonas may be associated with the chlorination/dechlorination sterilization approach 
employed at Calumet. Between 2017 and 2018 the river water indicators continued to increase in 
proportion, and while there were some fluctuations between 2018 and 2019, the trend continued 
(Figure 13). While chlorine and UV disinfection appeared to have similar impacts on microbial 
communities, there were in fact nuanced fluctuations in local river water associated bacteria, as a 
result of biogeographic differences between the North and Calumet regions. That both 
disinfection procedures impacted the proportion of fecal-coliform associated taxa should be an 
indication of their equal efficacy. More specific variation in effluent microbial signatures could 
not be detected adequately due to the lack of statistical power for these samples. 
 

The MWRD fecal coliform (FC) plate count results validated the observation of a 
reduction in sewage and fecal indicator organisms. Applicable primary contact recreation 
designated CAWS waters are subject to general use water quality standards (Illinois 
Administrative Code Title 35, section 302.209 for fecal coliforms) however the recreational 
season is considered March through November according to Effluent Disinfection standards 
outlines in Illinois Administrative Code Title 35, Section 304.224) which specify that 1) the 
geometric mean of five samples should not exceed 200 CFU/100 ml within 30 days and 2) no 
more than 10% of samples should exceed 400 CFU/100 ml during any 30-day period. These 
standards do not apply to incidental contact or non-contact recreational water. Because samples 
were collected monthly for assessment purposes, overall annual geomean of 200 CFU/ 100 mL 
and the limit of 400 CFU/100 mL was used to evaluate the compliance. 
 

The geometric means of the fecal coliform concentrations were significantly lower in the 
post-disinfection/TARP implementation period (2016–2019) compared to the pre-
disinfection/TARP implementation period (2013 to 2015) in effluent water collected at the 
O’Brien WRP (p<0.0001) and Calumet WRP (p<0.0001) (Tables 6 and Table 7). Similarly, the 
number of FC exceedances of 400 CFU/100 mL occurred in almost all samples collected 
between 2013 and 2015, but exceedances were only found in a small fraction of samples 
collected in 2016–2019 (Table 6). 
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FIGURE 13 Ongoing decrease in sewage indicators and increase in fresh-water indicators 
downstream of the Calumet and O’Brien WRPs between the four years of disinfection (2016, 
2017, 2018, 2019). This figure shows list of statistically differential bacterial Absolute 
Sequence Variants (ASVs) between the three years of the post-disinfection period with 
Benjamini-Hochberg FDR corrected p-values (< 0.05) labelled for each taxon. Taxa that are 
well-known sewage/fecal indicators and fresh-water indicators as per literature are 
highlighted in ‘bold blue’ and ‘bold red’, respectively. 
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TABLE 6 Summary of fecal coliform1 concentrations in final 
disinfected effluents at the O’Brien and Calumet WRPs during 
pre (2013–2015) and post (2016–2019) disinfection/TARP 
implementation period. 

 
WRP 2013 2014 2015 2016 2017 2018 2019 

 
O’Brien 
  GMa 13,520 14,494 9,110 50 70 71 64 
  #>400b 39/39 39/39 38/38 3/168 2/196 4/195 1/190 
 
Calumet        
  GM 8,749 7,520 2,672 16 19 15 22 
  #>400 39/39 39/39 42/64 0/168 3/197 3/197 0/196 
 
a Fecal Coliform CFU/100 mL Geometric Mean 

b Number of samples above 400 FC CFU/100 mL/per total number of 
samples collected. 

 
 

TABLE 7 Statistical comparison of fecal coliform 
(LOG(FC)) concentrations during pre (2013–2015) and 
post (2016–2019) disinfection/TARP implementation 
period. 

 
WRP  Period na GMb STDc pd 

       

O’Brien 
Pre 2013–2015 116 12,161 0.86 

0.000 
Post 2016–2019 749 64 0.93 

       

Calumet 
Pre 2013–2015 142 4,917 2.28 

0.000 
Post 2016–2019 759 18 1.02 

 
a n = Number of samples under all weather conditions; 

b GM = Geometric Mean of the Sample data were calculated 
from UMV (Uniformly Minimum Variance Unbiased 
Estimator); 

c STD = Standard Deviation of the Sample data were calculated 
from UMV; 

d p = Significance Probability of natural logarithm transformed 
means at being equal (significant if p < 0.05). 

 
 

To examine spatial and temporal changes in fecal coliform concentrations within the 
CAWS we compared fecal coliform concentrations in CAWS surface water upstream and 
downstream of the WRPs before and after disinfection/TARP implementation. We examined 
fecal coliform concentrations under three conditions: 
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1. E1 – sample collected under that did not meet categorical requirements, 
including dry weather (<0.1-inch precipitation) as defined by antecedent dry 
conditions for two days following a 0.25–0.49-inch event, four days following 
a 0.50–0.99-inch event, and six days following a >1.0- inch event. 

 
2. E2 – wet weather without Combine Sewer Overflows (> 0.5-inch 

precipitation), and 
 

3. E3 – wet weather with Combine Sewer Overflows, to the extent such events 
occur, includes the Pumping Station, if discharging. 

 
In the North Shore Channel and North Branch of the Chicago River sites downstream of 

the O’Brien WRP (sites 36 and 73), the geometric mean fecal coliform concentrations were 
significantly lower in the 2016–2018 period (Table 8). When examined by the three weather 
conditions, comparisons of the 2013–2015 and 2016–2019 periods could only be made under E1 
conditions because only one sample was taken during E2 and E3 conditions from 2013 to 2016. 
For E1 conditions, the GM FC concentration and the number of exceedances of 400 CFU were 
lower at these sites in 2016–2019 compared to 2013–2015 (Table 9). 
 
 

 
 

TABLE 8 Statistical comparison of fecal coliform (LOG(FC) concentrations during the 
pre (2013–2015) and post (2016–2019) disinfection and tarp implementation monitoring 
at the CAWS north locations under all weather conditions. 

 
Sample Location Site Period na GMb STDc pd 

        

North Shore Channel Dempster St. 112 
2013–2015 25 274 2.37 

0.423 
2016–2019 42 160 2.77 

        

North Shore Channel Touhy Ave. 36 
2013–2015 27 11,694 0.79 

0.000 
2016–2019 43 269 1.76 

        

North Branch Chicago River Albany Ave. 96 
2013–2015 26 779 1.33 

0.894 
2016–2019 43 827 2.06 

        

North Branch Chicago River Diversey Ave. 73 
2013–2015 27 5,588 1.28 

0.000 
2016–2019 43 806 2.00 

 
a n = Number of samples under all weather conditions; 

b GM = Geometric Mean of the Sample data were calculated from UMV (Uniformly Minimum 
Variance Unbiased Estimator); 

c STD = Standard Deviation of the Sample data were calculated from UMV; 

d p = Significance Probability of natural logarithm transformed means at being equal (significant if 
p < 0.05). 
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TABLE 9 Summary of North Shore Channel and North Branch of the Chicago 
River system fecal coliform concentration during pre- and post-disinfection and 
tarp implementation. 

  Pre-Disinfection/TARP  

 
Post-Disinfection/TARP 

Phases 

  2013–2015  2016–2019 
 

Site  E1a E2b E3c  E1 E2 E3 
         
WW 112 #>400d 6/23 1/1 1/1 

 
1/29 1/5 7/8 

1.3 miles Upstream  GM/C* 188 3,300 130,000  57 45 15,019 
         
WW 36 #>400 25/25 1/1 1/1 

 
3/30 0/5 5/8 

0.7 miles Downstream GM/C* 11,099 21,000 24,000  155 181 2,721 
         
WW 73 #>400 25/25 1/1 1/1  15/30 3/5 8/8 
6.7 miles Downstream GM/C* 4,307 81,000 260,000  338 515 27,837 
         
WW 96 #>400 15/24 1/1 1/1  12/30 5/5 8/8 
Tributary River GM/C* 609 10,000 22,000  311 1,466 22,644 
 
a E1 – Monthly sampling event that did not meet categorical requirements, includes also the 

Dry weather (<0.1-inch precipitation). Dry weather was defined by antecedent dry 
conditions for two days following a 0.25–0.49-inch event; 

b E2 – Wet weather without Combine Sewer Overflows (> 0.5-inch precipitation); 

c E3 – Wet weather with Combine Sewer Overflows, to the extent such events occur, 
includes the Pumping Station, if discharging; 

d Number of samples above 400 FC CFU/100 mL per event(s); 

* Geometric Mean, For one event sample, actual count reported. 
 
 

Geometric mean fecal coliform concentrations in the mainstem Chicago River and South 
Branch of the Chicago River (sites 100 and 108) were not significantly different between the pre 
and post disinfection/TARP implementation periods (Table 10). This finding may be due to the 
distance of these sites from the WRPs, strongly suggesting fecal coliform levels at these sites are 
influenced by sources other than WRP discharge. When examined by weather conditions, 
geometric mean fecal coliform concentrations and 400 CFU exceedances were similar in the pre 
and post-disinfection period for E1 conditions. A comparison could not be made for E2 and E3 
conditions because too few samples were collected between 2013 and 2015 (Table 11). 
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TABLE 10 Statistical comparison of fecal coliform (LOG(FC) 
concentrations during the pre (2013–2015) and post (2016–2019) 
disinfection and tarp implementation monitoring at the mainstem and 
South Branch Chicago River under all weather conditions. 

 
Sample Location Site Period na GMb STDc pd 

        
South Branch 
Chicago River 

Archer Ave. 99 
2013–2015 27 769 3.78 

0.903 
2016–2019 41 866 3.98 

        
Chicago River 
Main Stem 

Wells St. 100 
2013–2015 27 933 1.95 

0.251 
2016–2019 42 1624 1.94 

        
South Branch 
Chicago River 

Loomis St. 108 
2013–2015 27 434 1.43 

0.330 
2016–2019 39 744 2.59 

 
a n = Number of samples under all weather conditions; 

b GM = Geometric Mean of the Sample data were calculated from UMV (Uniformly 
Minimum Variance Unbiased Estimator); 

c STD = Standard Deviation of the Sample data were calculated from UMV; 

d p = Significance Probability of natural logarithm transformed means at being equal 
(significant if p < 0.05). 

 
 

TABLE 11 Summary of Mainstem and South Branch of the 
Chicago River fecal coliform concentrations in samples collected 
during each of the categorical weather events for the pre- and post-
disinfection monitoring period. 

Site 

 Pre-Disinfection/TARP 

  
Post-Disinfection/TARP 

Phases 
 2013–2015 

 

2016–2019 

 
 

E1a E2b E3c 
 

E1 E2 E3 
         
WW 100 #>400d 16/25 –** 2/2  17/28 3/3 10/11 
Mainstem GMe 683 – 45,826  842 2,038 8,135 

        
WW 108 #>400 14/25 – 2/2  10/25 1/3 9/11 
SBCR GM 333 – 11,912  309 1,696 4,384 
         
WW 99 #>400 9/25 – 2/2  8/27 1/3 8/11 
SBCR GM 447 – 670,820  280 670 14,835 
 
a E1 – Monthly sampling event that did not meet categorical requirements, 

includes also the Dry weather (<0.1-inch precipitation). Dry weather was 
defined by antecedent dry conditions for two days following a 0.25–0.49-inch 
event; 

Footnotes continued on next page. 
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TABLE 11  (Cont.) 

 
b E2 – Wet weather without Combine Sewer Overflows (> 0.5-inch 

precipitation); 

c E3 – Wet weather with Combine Sewer Overflows, to the extent such events 
occur, includes the Pumping Station, if discharging; 

d Number of samples above 400 FC CFU/100 mL per event(s); 

e Geometric Mean; 

* Note no wet without CSO and two wet weather events (with CSO) was 
sampled during 2013–2015 (pre-disinfection/TARP) compared to 3 wet with 
no CSO and 11 wet with CSO condition in post disinfection period  
(2016–2019); 

** No sample collected. 
 
 

The GM FC level (including samples collected during all weather conditions) was 
significantly lower in the 2016–2019 period at sites 76 (Little Calumet River) and 59 (Cal-Sag 
Channel), which are mainstem sites below the Calumet WRP (Table 12). The number of FC 
exceedances was also much lower in 2016–2019 compared to 2013–2015. The GM FC 
concentration at Site 43, located, 17 miles from the Calumet WRP, was not significantly 
different between the two periods. GM FC concentrations in tributary sample sites downstream 
of the Calumet WRP were not significantly different between in 2013–2015 compared to  
2016–2019 (Table 13). 
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TABLE 12 Statistical comparison of fecal coliform (LOG(FC)) concentration 
during pre (2013–2015) and post (2016–2019) disinfection and tarp 
implementation at the Calumet sites under all weather conditions. 

 
Sample Location Site Period na GMb STDc pd 

        

Grand Calumet River Burnham Ave. 86 
2013–2015 40 1,961 2.93 

0.008 
2016–2019 42 433 2.09 

        

Calumet River 130th St. 55 
2013–2015 31 30 1.46 

0.042 
2016–2019 23 15 0.62 

        

Little Calumet River Indiana Ave. 56 
2013–2015 38 65 2.08 

0.006 
2016–2019 42 23 1.13 

        

Little Calumet River Halsted St. 76 
2013–2015 40 3,330 1.92 

0.000 
2016–2019 41 61 0.94 

        

Little Calumet River Ashland Ave. 57 
2013–2015 40 1,126 1.60 

0.206 
2016–2019 42 673 2.02 

        

Little Calumet River Wentworth Ave. 52 
2013–2015 31 3,129 1.74 

0.218 
2016–2019 25 1,804 1.52 

        

Thorn Creek 170th St. 97 
2013–2015 31 1,785 1.80 

0.278 
2016–2019 25 1,050 1.80 

        

Cal-Sag Channel Cicero Ave. 59 
2013–2015 40 2,027 2.12 

0.000 
2016–2019 42 152 2.09 

        

Cal-Sag Channel Routh #83 43 
2013–2015 40 248 2.25 

0.101 
2016–2019 42 105 2.43 

 
a n = Number of samples under all weather conditions; 

b GM = Geometric Mean of the Sample data were calculated from UMV (Uniformly 
Minimum Variance Unbiased Estimator); 

c STD = Standard Deviation of the Sample data were calculated from UMV; 

d p = Significance Probability of natural logarithm transformed means at being equal 
(significant if p < 0.05). 
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TABLE 13 Summary of mainstem and south branch of the Calumet River 
system fecal coliform concentrations in samples collected during each of the 
categorical weather events for the pre- and post-disinfection monitoring 
period. 

Site 

 Pre-Disinfection/TARP 

  
Post-Disinfection/TARP 

Phases 
 2013–2015 

 
2016–2019 

 
 

E1a E2b E3c 
 

E1 E2 E3 
         
WW 86 #>400d 17/29 5/6 4/5  9/30 7/10 2/2 
Upstream Tributary GMe 893 6,368 45,702  205 1,562 50,160 

        
WW 55 #>400 1/20 1/6 1/5  0/14 0/7 0/2 
Upstream Tributary GM 17 45 157  11 26 14 

        
WW 56 #>400 3/27 0/6 3/5  0/30 0/10 0/2 
1 mile Upstream GM 48 34 719  16 72 22 

        
WW 76 #>400 25/29 6/6 5/5  0/29 0/10 0/2 
1.3 miles Downstream GM 1,863 7,378 37,200  46 139 65 
         
WW 57 #>400 18/29 6/6 5/5  12/30 10/10 2/2 
Downstream Tributary GM 626 2,246 14,859  266 7,053 6,142 

        
WW 52 #>400 17/20 6/6 5/5  13/16 6/7 2/2 
Downstream Tributary GM 1,806 5,424 14,591  842 6,449 9,249 

        
WW 97 #>400 16/20 5/6 5/5  6/16 7/7 2/2 
Downstream Tributary GM 816 8,452 6,308  350 7,489 7,099 

        
WW 59 #>400 22/29 5/6 5/5  3/30 9/10 2/2 
6.4 miles Downstream GM 1,206 1,868 45,437  59 1,426 3,098 
         
WW 43 #>400 7/29 4/6 4/5  1/30 9/10 2/2 
17.2 miles Downstream GM 116 518 8,162  31 2,295 1,497 
 
a E1 – Monthly sampling event that did not meet categorical requirements, includes also the 

Dry weather (<0.1-inch precipitation). Dry weather was defined by antecedent dry 
conditions for two days following a 0.25–0.49-inch event; 

b E2 – Wet weather without Combine Sewer Overflows (> 0.5-inch precipitation); 

c E3 – Wet weather with Combine Sewer Overflows, to the extent such events occur, 
includes the Pumping Station, if discharging; 

d Number of samples above 400 FC CFU/100 mL per event(s); 

e Geometric Mean; 

* Note 6 wet weather events (with no CSO) and 5 with CSO was sampled during  
2013–2015 (pre-disinfection/TARP) compared to 10 wet with no CSO and 2 wet with 
CSO condition in post disinfection period (2016–2019). 
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1.3.4 General Assessment of Dry and Wet Weather Events with Stormwater Flow 
Conditions and Impact of Calumet TARP Construction on Microbial Diversity of 
CAWS 

 
Chicago and 51 suburbs in the District’s service area have combined sewer systems 

which discharged approximately 100 times a year to area waterways prior to the implementation 
of TARP. For an average rain event, the pollution load from these CSOs was equivalent to the 
organic waste loading from a population of four million people (Polls et al., 1998). During the 
most severe events, it was necessary to reverse the flow in the Chicago Area Waterway System 
(CAWS) by opening the sluice gates at the controlling works and discharging stormwater and 
raw sewage to Lake Michigan. Hence, in response to the problem of flooding and maintaining 
water quality, the TARP initiative was implemented with huge underground tunnels excavated 
beneath the city to intercept CSO discharges in excess of interceptor sewer capacity, and convey 
them to three large open surface reservoirs for storage. Following a storm, the captured CSOs 
were then pumped out of the tunnels and reservoirs to WRPs for treatment, and later discharged 
as treated effluent to area waterways. The TCR in the Calumet WRP service area became 
operational on November 26, 2015. 
 

The microbiome analysis focused on 13 sites from the Calumet WRP region, O’Brien 
WRP region, main stem, South Branch Chicago River, and South Fork River system. Please note 
that the microbiome analyses in this report doesn’t cover all the wet weather events with and 
without CSOs (see the Tables 3,4, and 5 for details of each event). We selected the microbiome 
samples from each year that met the categorical requirements for dry weather events, wet 
weather events without CSOs and wet weather events with CSOs by matching the dates of 
occurrence of the events as provided in the MWRD’s Post TARP Construction Monitoring 
Report (Gallagher and Wasik, 2019). Briefly, in the Calumet region, no wet events (with and 
without CSOs) samples were collected in 2013, no wet weather with CSOs were recorded in 
2016, 2018 and 2019. Only two wet weather with CSOs were recorded in 2017 (Table 4). This 
reduction in number of CSOs can be significantly attributed to the construction of the TCR in the 
Calumet WRP service area. In the O’Brien region, samples were collected during dry and wet 
weather events without CSOs in 2013; 2014 and 2015 recorded only dry weather events; 2016 
recorded 5 CSO events; 2017, 2018 and 2019 recorded only one CSO event (Table 3). The main 
stem and south branch region recorded only one CSO event each in the years 2013, 2015, 2017, 
2018, three in 2019 and seven CSO events in 2016 (Table 5). Tables 3, 4 and 5 describe the 
number of dry (E1), wet weather events without CSOs (E2) and wet weather events with CSOs 
(E3) and dates of occurrences. The impact of dry and wet events (with and without CSOs) on the 
CAWS microbial dynamics was analyzed at both the phylum and genera level during the pre- 
and post-TARP implementation phases. 
 

In the Calumet region (covering sites 86, 56, 76, 57, 59 and 43), the overall trend at both 
the upstream and downstream sites (of the WRP) was an increasing proportion (Mann Whitney 
U, p < 0.05) of Bacteroidetes and Firmicutes during the wet events (both with and without 
CSOs). However, during wet events Bacteroidetes and Firmicutes were more abundant (Mann 
Whitney U, p < 0.05) with a CSO event compared to without (Figure 14). In the post-
disinfection/TARP phase, Bacteroidetes and Firmicutes were both significantly proportionally 
reduced (Mann Whitney U, p < 0.05) in comparison to the pre-disinfection/TARP phase 
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(Figure 14). An increase in the proportion of Bacteroidetes and Firmicutes was associated with 
rainfall events in all CAWS sites investigated. Both phyla are found in the microbial community 
associated with stormwater and sewage water, and were both significantly reduced (Mann 
Whitney U, p < 0.05) throughout the CAWS post-treatment. As the post-TARP phase overlaps 
with the post-disinfection phase this reduction can be attributed to the implementation of 
disinfection practices at the WRPs. These results are also in good agreement with reduction of 
CSO events to zero in the years 2016, 2018, and 2019 (only 2 CSO events were recorded in 2017 
(Gallagher and Wasik, 2019)). 
 

Sewage indicators such as Arcobacter and Acinetobacter increased (Mann Whitney U, p 
< 0.05) in proportion during the wet weather events (with and without CSOs) (Figure 15). The 
fecal indicator bacteria Bacteroides increased in proportion during the wet weather events with 
CSOs compared top without at sites 86 (upstream), 76, 59 (downstream), and 57 (a downstream 
tributary); but it was a comparatively rare taxon (average of 1.51% of total). Flavobacterium 
increased significantly (Mann Whitney U, p < 0.05) in the post-disinfection and post-TARP 
phase at downstream sites (2016–2019), compared to the pre-disinfection/TARP phase which 
could be attributed to both disinfection as well as TARP implementation. These results in the 
Calumet region thus highlight the efficiency of Calumet TARP reservoir implementation in 
regulating the sewer microbial signature across this region during the heavy rainfall events, 
precisely characterized with CSOs. 
 
 

 

FIGURE 14 Stack plots showing the abundance patterns of the dominant phyla (>1% relative 
abundance) at sites 86, 56, 76, 57, 59 and 43 of the Calumet region with samples collected from Pre 
(2013–2015) and Post- Disinfection/TARP (2016–2019) phases during dry weather events, wet 
weather events without (E2) CSOs and with CSOs (E3). Site 57 is a tributary and not directly 
downstream of the Calumet WRP. 
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FIGURE 15 Stack plots showing the abundance patterns of the dominant genera (>1% relative 
abundance) at sites 86, 56, 76, 57, 59 and 43 of the Calumet region with samples collected from Pre 
(2013–2015) and Post- Disinfection/TARP (2016–2019) phases during dry weather events, wet 
weather events without (E2) and with CSOs (E3). Site 57 is a tributary and not directly downstream 
of the Calumet WRP. 
 
 

In the O’Brien region (sites 96, 112, 36, 73), the phyla Firmicutes increase (Mann 
Whitney U, p < 0.05) in proportion in the wet events (Figure 16), and with CSO events during 
wet events. Post-disinfection, Firmicutes decreased (Mann Whitney U, p < 0.05) in proportion at 
the downstream sites (36 and 73), but not the upstream site 112. This further suggests that this 
reduction at the downstream sites can thus be attributed to the disinfection process (2016–2019). 
At site # 96 which is a tributary feeding to the North Shore Channel downstream of the O’Brien 
WRP (~3.2 miles), Firmicutes remained at similar levels throughout the study, irrespective of 
wet and dry events, likely because this site has no direct contribution from the O’Brien WRP. 
Acinetobacter and Arcobacter were significantly proportionally enriched (Mann Whitney U, 
p < 0.05) during wet weather events with CSOs compared without CSOs (Figure 17), but only at 
the downstream sites. The upstream site # 112, showed an increase (Mann Whitney U, p < 0.05) 
in only Arcobacter. Site#96 (tributary river) had a unique microbial signature with no significant 
enrichment of sewer or fecal associated bacteria. 
 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

36 

 

FIGURE 16 Stack plots showing the abundance patterns of the dominant phyla (>1% relative 
abundance) at sites 96, 112, 36, and 73 of the O’Brien North region with samples collected from Pre 
(2013–2015) and Post-TARP (2016–2019) phases during dry weather events (E1), wet weather 
events without (E2) and with CSOs (E3). Site 96 is a tributary and not directly downstream of the 
O’Brien WRP. 
 
 

 

FIGURE 17 Stack plots showing the abundance patterns of the dominant genera (>1% relative 
abundance) at sites 96, 112, 36, and 73 of the O’Brien North region with samples collected from Pre 
(2013–2015) and Post-Disinfection (2016–2019) phases during dry weather events (E1), wet weather 
events without (E2) and with CSOs (E3). Site 96 is a tributary and not directly downstream of the 
O’Brien WRP. 
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In the main stem and south branch region (sites 100, 108, and 99), Firmicutes 
significantly proportionally increased (Mann Whitney U, p < 0.05) during the wet events 
(Figure 18). However, at site # 100, which is located downtown and doesn’t have any direct 
inflow from the O’Brien WRP, Firmicutes had very low abundance, even compared to the other 
south branch sites. Firmicutes proportionally decreased in the post-disinfection phase. CSO 
events were characterized by increased (Mann Whitney U, p < 0.05) sewer associated taxa such 
as Acinetobacter and Arcobacter (Figure 19). But no specific trend (i.e., further reduction of 
these microbes) was observed between the pre- and post- TARP/disinfection years at the main 
stem and south branch sites. 
 
 

 

FIGURE 18 Stack plots showing the abundance patterns of the dominant phyla (>1% relative 
abundance) at sites 99 & 108 from the south branch and site 100 form the main stem of CAWS with 
samples collected from Pre (2013–2015) and Post-TARP (2016–2019) phases during dry weather 
events (E1), wet weather events without (E2) and with CSOs (E3). Please note that no wet weather 
events without CSOs were recorded in the pre-TARP years (2013–2015). 
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FIGURE 19 Stack plots showing the abundance patterns of the dominant genera (>1% relative 
abundance) at sites 99 & 108 from the south branch and site 100 form the main stem of CAWS with 
samples collected from Pre (2013–2015) and Post-Disinfection/TARP (2016–2019) phases during 
dry weather events (E1), wet weather events without (E2) and with CSOs (E3). Please note that no 
wet weather events without CSOs were recorded in the pre-TARP years (2013–2015). 
 
 
1.3.5 Specific Microbial Community Strongly Correlates with Fecal Coliform Data 
 

Quantitative fecal coliform data (Table 14, 15, 16) were correlated against the different 
taxonomic groups in the molecular microbiome data. Overall, linear regression fitting of 
microbiome data against fecal coliform data for all the sites, demonstrated that sewage associated 
phyla (Firmicutes, Bacteroidetes and Proteobacteria) were positively correlated (Spearman 
correlation, p<0.05) with increasing fecal coliforms. Verrucomicrobia was negatively correlated 
(Spearman correlation, p<0.05) with increasing coliforms. Fecal coliforms counts were also 
positively correlated with Firmicutes and Bacteroidetes proportions during the wet events 
compared to dry events (Figures 14, 16 and 18). Acinetobacter, Arcobacter, Blautia, 
Bacteroides, and Prevotella, etc. were positively correlated with fecal coliform counts. Whereas 
Synechococcus, Sediminibacterium, Fluviicola (river water indicators) were negatively 
correlated with coliforms (Figure 20). 
 

Candidate taxa with correlation values (R2) greater than 0.6 for investigating their 
dynamics across different sites of CAWS during dry, wet and CSO events. Acinetobacter, 
Arcobacter, Bacteroides, Cloacibacterium, and Trichoccus were enriched (ANCOM, Mann 
Whitney U, p < 0.05) in wet events both with and without CSOs in the Calumet region 
(Figure 21), and these genera were reduced in proportion under the post-TARP phase when 
compared to pre-TARP phase. This trend was consistent between both the upstream and 
downstream sites highlighting the efficacy of both Calumet TARP reservoir (explained by 
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reduction of sewer microbiome at the upstream sites) as well as disinfection (explained by 
reduction at the downstream sites). Flavobacterium, Sediminbacterium, Fluviicola were 
significantly increased (ANCOM, Mann Whitney U, p < 0.05) in proportion during the wet 
weather events (rainfall) compared to the dry weather events both upstream and downstream 
sites with a significant reduction during the post-disinfection/TARP phase (Figure 21). Between 
the wet weather events with and without CSOs, we observed a significant increase (ANCOM, 
Mann Whitney U, p < 0.05) of the sewer microbes and a significant decrease (ANCOM, Mann 
Whitney U, p < 0.05) of river water indicators during the CSO events in contrast to the wet 
weather conditions without CSOs. 
 

In the CAWS north region, we identified an increase in bacteria that correlated positively 
with fecal coliform data during the wet weather events (with and without CSOs) compared to the 
dry weather events and a decrease in the river water indicators (correlating negatively with the 
fecal coliform data) during the wet weather events (Figure 22). Across the downstream sites, we 
observed a decrease in the positively correlated bacteria during the post-disinfection phase but 
not across upstream sites. These results highlight the impact of disinfection process. In the main 
stem and south branch region a significant increase (ANCOM, Mann Whitney U, p < 0.05) in 
fecal coliform associated bacteria was observed during the wet weather events (compared to the 
dry events) although no specific trend was observed between the pre- and post-TARP/ 
disinfection phase (Figure 22). This can be explained by the fact that these sites are also distant 
from the O’Brien WRP and sites 99 and 100 have no direct O’Brien WRP influence. 
 
 

 

FIGURE 20 Correlation analyses based on Spearman Rank coefficient between microbial phyla, 
genera and fecal coliform data. * represents all the statistically significant correlations. The red 
color and gradient represent all positive correlations and the blue color along with its gradient 
represents negative correlations. The correlation scale varies between -1 to +1 representing R2 
value of -100% to +100%. The * represents Benjamini-Hochberg FDR adjusted p-values ≤ 0.05. 
The ** represents Benjamini-Hochberg FDR adjusted p-values ≤ 0.01. The *** represents 
Benjamini-Hochberg FDR adjusted p-values ≤ 0.001. The candidates listed in blue color (negative) 
and red color (positive) are the ones with correlation value greater than 0.6 and were hence selected 
for further community structure analyses during wet, dry and CSO events across multiple sites of 
CAWS. 
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TABLE 14 Fecal coliform (CFU/100ml) 
per site before (Pre-) and after Disinfection/ 
TARP monitoring phase (Post-) at the 
Calumet region. 

 
Site Mean Median St.Dev. 

    
Site_86_Post_E1 702.7 105.0 1608.4 
Site_86_Post_E2 6038.8 3850.0 6718.2 
Site_86_Post_E3 54000.0 54000.0 28284.3 
Site_86_Pre_E1 18891.8 470.0 57648.4 
Site_86_Pre_E2 2003.9 405.0 4454.0 
Site_86_Pre_E3 28333.6 42000.0 24542.0 
Site_56_Post_E1 10.7 5.0 12.0 
Site_56_Post_E2 116.9 105.0 105.7 
Site_56_Post_E3 27.5 27.5 31.8 
Site_56_Pre_E1 302.0 25.0 774.0 
Site_56_Pre_E2 1768.6 65.0 3535.0 
Site_56_Pre_E3 3000.2 1100.0 4278.8 
Site_76_Post_E1 46.4 40.0 38.1 
Site_76_Post_E2 197.5 200.0 129.1 
Site_76_Post_E3 65.0 65.0 7.1 
Site_76_Pre_E1 10704.8 2200.0 21935.6 
Site_76_Pre_E2 6117.5 2200.0 8310.4 
Site_76_Pre_E3 33373.6 120.0 57700.2 
Site_57_Post_E1 235.6 125.0 319.0 
Site_57_Post_E2 7700.0 6900.0 2772.3 
Site_57_Post_E3 6300.0 6300.0 1979.9 
Site_57_Pre_E1 5704.5 390.0 16266.1 
Site_57_Pre_E2 2781.4 2800.0 2440.6 
Site_57_Pre_E3 3667.3 4000.0 3510.9 
Site_59_Post_E1 53.7 30.0 69.2 
Site_59_Post_E2 1890.0 1800.0 1343.8 
Site_59_Post_E3 3400.0 3400.0 1979.9 
Site_59_Pre_E1 1471.2 510.0 1985.2 
Site_59_Pre_E2 5652.5 1050.0 12360.1 
Site_59_Pre_E3 7733.6 3200.0 10742.8 
Site_43_Post_E2 4000.0 3900.0 1367.5 
Site_43_Post_E3 1500.0 1500.0 141.4 
Site_43_Pre_E1 310.1 40.0 481.0 
Site_43_Pre_E2 740.1 380.0 800.7 
Site_43_Pre_E3 16533.7 1600.0 27262.3 
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TABLE 15 Fecal coliform (CFU/100ml) per 
site before and after Disinfection monitoring 
phase at CAWS North region 

 
Site Mean Median St.Dev 

    
Site_112_Post_E1 85.1 60.0 103.9 
Site_112_Post_E2 170.0 50.0 261.5 
Site_112_Post_E3 202405.7 14000.0 450566.9 
Site_112_Pre_E1 243.7 110.0 389.0 
Site_112_Pre_E2 3300.0 3300.0 0.0 
Site_36_Post_E1 191.9 150.0 136.8 
Site_36_Post_E2 190.0 200.0 38.3 
Site_36_Post_E3 55004.3 1300.0 134600.7 
Site_36_Pre_E1 10859.1 10500.0 9184.3 
Site_36_Pre_E2 21000.0 21000.0 0.0 
Site_96_Post_E1 619.5 170.0 1266.5 
Site_96_Post_E2 2225.0 2350.0 1239.3 
Site_96_Post_E3 83871.4 50000.0 136805.3 
Site_96_Pre_E1 380.3 290.0 520.4 
Site_96_Pre_E2 10000.0 10000.0 0.0 
Site_73_Post_E1 451.9 380.0 572.4 
Site_73_Post_E2 605.0 655.0 222.5 
Site_73_Post_E3 160942.9 20000.0 361861.1 
Site_73_Pre_E1 3288.0 2400.0 3649.5 
Site_73_Pre_E2 81000.0 81000.0 81000.0 

 
 

TABLE 16 Fecal coliform (CFU/100ml) per site before and after Disinfection 
monitoring phase at Main Stem and South Branch Chicago River System. 

 
Region Site Mean Median Stdev 

     

Main stem 

Site_100_Post_E1 4443.6 1040.0 6941.1 
Site_100_Post_E2 9065.0 7250.0 8737.9 
Site_100_Post_E3 11614.3 11000.0 8800.1 
Site_100_Pre_E1 7611.8 505.0 23087.1 
Site_100_Pre_E3 4200.0 4200.0 0.0 

     

South Branch River System 

Site_108_Post_E1 755.5 70.0 1396.5 
Site_108_Post_E2 10502.5 455.0 20332.5 
Site_108_Post_E3 59257.1 3600.0 90123.8 
Site_108_Pre_E1 396.1 300.0 435.8 
Site_108_Pre_E3 23150.0 23150.0 28072.1 

     

South Fork River System 

Site_99_Post_E1 3191.7 25.0 9467.6 
Site_99_Post_E2 26758.8 15015.0 36354.2 
Site_99_Post_E3 1831510.0 160000.0 4226156.6 
Site_99_Pre_E1 42094.7 25.0 134078.3 
Site_99_Pre_E3 675000.0 675000.0 106066.0 
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FIGURE 21 Stack plots showing distribution pattern of phyla that demonstrate significant 
correlation (positive and negative) with fecal coliform data, across the 6 sites of Calumet WRP, 
4 sites of O’Brien WRP and 3 sites of the main stem of CAWS both pre- and post- Disinfection/ 
TARP. The distance in miles (from the WRPs) is mentioned along with each site. Site 57 is a 
tributary and not directly downstream of the Calumet WRP. 
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FIGURE 22 Stack plots showing distribution pattern of genera that demonstrate significant 
correlation (positive and negative) with fecal coliform data, across the 6 sites of Calumet WRP, 
4 sites of O’Brien WRP and 3 sites of the main stem of CAWS both pre- and post-Disinfection/ 
TARP. The distance in miles (from the WRPs) is mentioned along with each site. Site 96 is a 
tributary and not directly downstream of the O’Brien WRP. 
 
 
1.3.6 Sources of Microbial Organisms across the CAWS Sites 
 

Fecal contamination of recreational waters is an increasing global health concern and 
therefore tracing the source of the contamination is an important step towards maintaining water 
quality. In this 7-year long microbiome study of Chicago Area Waterways System (CAWS) 
using 16S rRNA gene amplicon data, we employed the Markov-Chain Monte Carlo based 
analytical tool, SourceTracker, for microbial source tracking (MST). While conventional MST 
methods such as qPCR track specific microorganisms, this molecular sequencing approach 
enables broad spectrum identification of the probability that specific strain-level sequences 
originated from one of several different sources comprising 16S rRNA data. This provides a less 
accurate, but more comprehensive assessment of the impact of different sources on the 
composition of bacteria in the CAWS. We developed a manually curated database of different 
sources using CAWS samples (effluent, incoming sewage, sediment, fish gut and mucus) and an 
additional ~200,000 samples from the Earth Microbiome Project (EMP) latest release version 
(qiita.microbio.me/emp). The sources from the EMP database included- animal feces, fresh 
water, soil, human feces, mucus, and stream sediment. We tracked these sources for data from all 
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sites across the 7 years of observation from the Calumet region, O’Brien region, main stem, 
north and south branch Chicago river, and south fork river system. 
 

SourceTracker analysis indicates that the sources of microbial diversity across all the 
river water samples can be largely attributed to effluent, sewage, CAWS sediment, river water, 
and fish associated samples (Figure 23). The three CAWS regions i.e., North (O’Brien), Main, 
and Calumet, have a unique compilation of potential sources that best explain the microbial 
signatures in those regions. For example, river water samples collected from the Calumet region 
show approximately equal contributions from fish mucus, effluent, and sewage samples; while 
river water samples collected from the North region have a dominant effluent signature. One 
caveat for this analysis is that we had very few fish associated samples (n=219) and effluent 
samples (n=92), which can bias quantitative source estimation. The EMP database is the largest 
collection of animal feces till date including sources from bats, primates, anteaters, sloths, wolf, 
buffalo, birds, insects, bear, bison, cow, kangaroo, emu, monkeys, dogs, rabbits, deer, fox, goose, 
geese, gulls etc. A separate database also exists for the aquatic biome covering different fish in 
EMP. The human fecal sources cover both urban as well as village settlements. In validation of 
the previous analysis suggesting low number of potential feces and sewage associated bacterial 
ASVs, the contribution made by human fecal matter and animal feces across all water column 
samples was extremely low, i.e., an average of 0.03% and 0.07% of all taxonomic units in each 
sample, respectively. However, ~40% of bacterial taxonomic diversity in the CAWS that cannot 
be reliably attributed to a ‘source’ (Figure 23). This is possibly because of an absence of urban 
river microbiomes in our ‘source’ databases. Additionally, it is likely that these are endemic but 
extremely rare taxa that are only found in the Chicago River system. 
 

SourceTracker results from samples immediately downstream of the WRP outfalls, 
e.g., site#36, suggest that the majority of the ASVs can be mapped to the treated effluent 
(Figure 23); however both sites at O’Brien and Calumet had low concentrations of human or 
animal feces-associated taxa. For instance, well established FIBs such as Bacteroides 
(Cal~0.52%, O’Brien~0.50%), Bifidobacterium (Cal~0.11%, O’Brien~0.20%, Blautia 
(Cal~0.12%, O’Brien~0.15%), Cloacibacterium (Cal~0.49%, O’Brien~0.56%), Prevotella 
(Cal~0.15%, O’Brien~0.15%), were at <1% proportion across all seven years. Acinetobacter 
(Cal~7.52%, O’Brien~6.89) and Arcobacter (Cal~5.54%, O’Brien~3.74%) were the most 
dominant microbial signature in the effluent samples which are considered as ‘sewer and 
treatment-plant associated’ microbes, not necessarily fecal-associated (Fisher et al. 2014). Our 
results are validated by previous work suggesting that that human microbiome contributes only 
~10% of the sewage and treated effluent community, while the sewer pipe and treatment 
associated bacteria comprise ~80% (VandeWalle et al. 2012). 
 

The CAWS water column microbiome was primarily sourced from its sediment. 
Sediment samples were enriched for Dechloromonas (Calumet region: 5.42%, CAWS north: 
7.42%, Main stem and south branch: 5.40%), Thiobacillus (2.73%, 2.06%, 0.74%), 
Acinetobacter (0.53%, 0.87%, 2.41%), Geobacter (0.78%, 1.43%, 0.63%), Syntrophobacter 
(1.08%, 0.86%, 0.79%), Desulfococcus (0.90%, 0.54%, 0.43%). Interestingly, the second largest 
contribution was from fish-associated mucus (avg. 16%), which comprised mostly Acinetobacter 
(avg. 5.1%), Clostridium (4.0%), Polynucleobacter (3.2%), Pseudomonas (2.8%), Emticicia 
(2.2%) and Flavobacterium (1.8%). Fish guts on the other hand contributed an average of 2% 
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towards the water column community, with Mycoplasma comprising 13% of the fish gut 
community. 
 

While this technique is promising, the lack reference databases, geographic variability, 
the cost and time to build high-throughput sequencing libraries are major limitations to 
widespread application. Hence, 16S rRNA surveys need to be supplemented with shotgun 
metagenomics and qPCR that provide greater taxonomic and functional resolution of the 
microbial community, enabling more accurate analysis of fecal indicator bacteria. While we were 
unable to apply qPCR, we have explored the use of shotgun metagenomics below. 
 
 

 

FIGURE 23 CAWS Microbial Community Sources Using Earth Microbiome Project Database. 
SourceTracker 2.0 analysis of water column samples by sampling site for years 2013–2019 using a 
curated database for (A) Calumet region, (B) O’Brien region, and (C) Sites # 100 from Main, 108 
from the South Branch Chicago River, 99 from South Fork River System. A curated database was 
built using CAWS samples (i.e., effluent, sewage, sediment, fish gut and mucus) and additional 
~200,000 samples from the Earth Microbiome Project (EMP) latest release version 
(qiita.microbio.me/emp). The sources from the EMP database included- animal feces, human feces, 
fresh water, soil, and stream sediment. 
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1.3.7 Employing Shotgun Metagenomics to Enhance Taxonomic Resolution and Examine 
Virulence and Resistance Factors across the CAWS during Dry and Wet Weather 
Events 

 
Metagenomic sequencing enables the analysis of all genomic DNA in a sample, which 

provides enhanced taxonomic resolution when compared to the amplicon sequencing analysis of 
a single gene such as 16S rRNA; but metagenomics also provides access to the analysis of all the 
functional genes which code for proteins and enzymes in the bacterial genomes, enabling us to 
ask novel questions that 16S rRNA analysis can only infer answers to. However, due to cost-
limitations, we only selected a subset of samples (n=71) for deep shotgun metagenomic 
sequencing and characterization. The sample set included upstream (sites 56, 112) and 
downstream (76, 36) sites at Calumet and O’Brien WRPs and sites from main stem (100), south 
branch (sites 99, 108) sampled from 2013–2019 including pre- (2013–2015) and post-
disinfection (2016–2019) phases and dry and wet weather events. Please note some of the 
samples failed sequencing due to low starting biomass (i.e., low concentration of DNA for 
metagenomic library preparation and sequencing). These samples are listed in the index of each 
figure. Overall, the shotgun data for all the sites supported the 16S rRNA analysis data, 
suggesting a low proportion of human fecal indicators such as Bacteroides (~0.08%), Prevotella 
(0.05%), Bifidobacterium (0.01%), Cloacibacterium (0.06%) etc. in the CAWS water 
(Figures 24, 25, 26). 
 

In the Calumet region, Limnohabitans spp. and Acinteobacter johnsonii were at 
significantly greater (ANCOM, Mann Whitney U, p < 0.05) proportion in downstream site#76 
(Figure 24). Limnohabitans (Betaproteobacteria, Comamonadaceae) is considered a key 
bacterioplankton freshwater genus known to use dissolved organic carbon (DOC) from algae, 
and provide substrates for photolytic chemical transformation for other bacterial species 
(Kasalický et al. 2013) (Jezberová et al. 2017). Acinetobacter johnsonii is a well-known 
activated sludge-associated bacterium involved in phosphate removal (Kim, Hao, and 
Wang 1997). At both the upstream and downstream sites, Thiomonas was significantly enriched 
(ANCOM, Mann Whitney U, p < 0.05) during wet weather events (Figure 24); Thiomonas is a 
sulfur oxidizing bacteria often associated with sludge and sewage water (Huber et al. 2016). In 
downstream site#76, the proportion of Arcobacter increased (ANCOM, Mann Whitney U, 
p < 0.05) during the wet weather, which validates the 16S rRNA amplicon data. 
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FIGURE 24 Stack plots showing the abundance patterns of the 20 most abundant species 
including species with <1% proportion at the upstream (site#56) and downstream (site#76) sites of 
the Calumet WRP with samples collected from 2014–2019 during the dry and wet weather events. 
Samples collected during a wet weather event (in 2017) and dry weather event (in 2015) from site 76 
failed sequencing. The year 2013 in the Calumet region had no recorded wet events, hence the 
samples were not used in shotgun sequencing. Species whose proportional abundance is less than 
1% are merged as one stack. 
 
 

At O’Brien, the proportion of Pseudomonas significantly decreased, (ANCOM, Mann 
Whitney U, p < 0.05) while Acinetobacter, Arcobacter and Thiomonas significantly increased 
(ANCOM, Mann Whitney U, p < 0.05) in the downstream site#36, compared to upstream site 
#112 (Figure 25). Acinetobacter, Arcobacter and Thiomonas are all well-established sewage and 
sludge associated bacteria. Acinetobacter and Arcobacter species significantly increased in 
proportion during the wet weather events at the downstream site#36. 
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FIGURE 25 Stack plots showing the proportional trends of the 20 most abundant species 
including species with <1% proportion at the upstream (site#112) and downstream (site#36) sites of 
the O’Brien WRP with samples collected from 2013–2019 during the dry and wet weather events. 
No wet weather collections occurred during 2014 and 2015. Species whose proportional abundance 
is less than 1% are merged as one stack. 
 
 

Microbial dynamics between the dry and wet weather events at site#100 from the main 
stem region, and sites#99 and #108 from the south branch river system (Figure 26) was also 
evaluated. The proportion of Pseudomonas increased (ANCOM, Mann Whitney U, p < 0.05) 
during the wet weather events at all the three sites, but only in the years 2016 and 2017. At site 
#100 specifically, Burkholderia cenocepacia and Arcobacter spp. significantly increased 
(ANCOM, Mann Whitney U, p < 0.05) in proportion during wet weather events. At site#108, 
like site #100, Burkholderia species significantly increased (ANCOM, Mann Whitney U, 
p < 0.05) during the wet weather events compared to the dry events. Burkholderia species occur 
in particle-rich waters, which suggest it may have come from eroded soils washed into the river 
during heavy rainfall (Zimmermann et al. 2018). At site #99 (a tributary of the south branch), 
there was an increase in A. johnsonii and Arcobacter species during the wet weather events. 
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Site#99 was enriched compared to the other sites in Polynucleobacter necessaries, a free-living 
river water bacterium (Hahn et al. 2016; Sangwan et al. 2016). 
 
 

 

FIGURE 26 Stack plots showing the abundance patterns of the 20 most abundant species 
including species with <1% proportion at the sites 99 & 108 from the south branch river system 
and site#100 from the main stem of CAWS with samples collected from 2014–2019 during the dry 
and wet weather events. The 2015 dry weather event sample failed sequencing, and 2014 and 2015 
had no sampled wet weather events. Species whose proportional abundance is less than 1% are 
merged as one stack. 
 
 

While 16S rRNA amplicon sequencing data can be used to predict the proportion of 
genes that encode proteins and enzymes in a microbiome, shotgun metagenomics can be used to 
observe the actual metabolic potential. As observed in other environments (Fierer et al. 2012, 
Huttenhower et al. 2012, Tully et al. 2018), the majority of functional metabolic traits in the 
genome of the microbiome were conserved across sites. The top 20 most prevalent metabolic 
pathways encoded by the CAWS metagenome included amino acid biosynthesis (e.g., valine, 
isoleucine, arginine), aerobic respiration (cytochrome c based), pyruvate fermentation, 
nucleoside biosynthesis (guanosine, adenosine, pyrimidine), acetyl CoA biosynthesis, and 
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photosynthetic light reactions (Figures 27, 28 and 29); most of which are essential core 
metabolic processes found in the majority of bacteria. River waters are important transport 
pathways for solutes and matter fluxes of relevance to nitrogen, carbon and oxygen and thus 
primary productivity and functioning of the river ecosystems depend largely on the aerobic 
respiration which is driven by availability of carbon and oxygen (Vieweg et al. 2016). However, 
the wastewater treatment systems use anaerobic chambers for bacterial digestion of 
sludge/sewage which leads to enrichment of anaerobic pathways such as pyruvate fermentation. 
The presence of carbon and other hydrocarbons in the water also leads to enrichment of beta-
oxidation process such as acetyl CoA biosynthesis. The metagenomic survey presented here 
validates a previous metatranscriptomic analysis of the Detroit river (Falk et al. 2019). 
 
 

 

FIGURE 27 Stack plots showing the abundance patterns of the 20 most prevalent metabolic 
pathways from the upstream (site#56) and downstream (site#76) sites of the Calumet WRP with 
samples collected from 2014–2019 during the dry and wet weather events. Sample collected during 
a 2017 wet weather event and a 2015 dry weather event from site 76 failed sequencing. In 2013 the 
Calumet region had no recorded wet events. 
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FIGURE 28 Stack plots showing the abundance patterns of the 20 most prevalent metabolic 
pathways from the upstream (site#112) and downstream (site#36) sites of the O’Brien WRP with 
samples collected from 2013–2019 during the dry and wet weather events. 2014 and 2015 had no 
recorded wet weather events. 
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FIGURE 29 Stack plots showing the abundance patterns of the 20 most dominant pathways 
annotated at the sites 99 & 108 from the south branch river system and site#100 from the main 
stem of CAWS with samples collected from 2014–2019 during the dry and wet weather events. A 
sample from the 2015 dry weather event failed sequencing. 2014 and 2015 had no wet weather 
events recorded. 
 
 

Outside of central metabolism pathways, the proportional variance of 30 virulence 
associated genes were also characterized, which overall were quite rare (0-0.25%; Figures 30, 
31, 32). These genes demonstrated no proportional trends between the dry and wet weather 
events. While the low proportion of virulence genes may suggest low proportions of potential 
pathogens, it is also critical to note that other potential pathogens such as viruses and protozoa 
may not have been adequately characterized in this analysis. While, the shotgun data based 
functional annotations includes bacteria, viruses, protists and fungi, the overall representation of 
genomes of non-bacterial taxa still remains limited in the databases in contrast to the bacterial 
clades. Additionally, pathogens can be infectious even in low cellular or partial abundance, and 
our analysis does not quantify these abundances not provide information on infectivity rate. 
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FIGURE 30 Heatmap showing the distribution of 30 virulence genes from the upstream (site#56) 
and downstream (site#76) sites of the Calumet WRP with samples collected from 2014–2019 during 
the dry and wet weather events. Samples from a 2017 wet weather event and 2015 dry weather 
event failed sequencing. 2013 in the Calumet region had no recorded wet events. The color scale 
stands for the relative abundance range of blue (low, 0.0%) to red (high, 0.25%). 
 
 

0.0                                 0.13                            0.25
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FIGURE 31 Heatmap showing the distribution of 30 virulence genes from the upstream (site#112) 
and downstream (site#36) sites of the O’Brien WRP with samples collected from 2014–2019 during 
the dry and wet weather events. 2014 and 2015 had no recorded wet weather events. The color scale 
stands for the relative abundance range of blue (low, 0.0%) to red (high, 0.25%). 
 

0.0                                 0.13                            0.25
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FIGURE 32 Heatmap showing the distribution of 30 virulence genes from sites 99 & 108 (South 
branch river system) and site#100 (main stem) of the CAWS with samples collected from 2014–
2019 during the dry and wet weather events. The sample from the 2015 dry weather event failed 
sequencing. 2014 and 2015 had no recorded wet weather events. The color scale stands for the 
relative abundance range of blue (low, 0.0%) to red (high, 0.25%). 
 
 
1.3.8 Strong Correlation between the Microbiome and Riverine Physicochemical 

Properties 
 

The bacterial community interacts with the ambient environment and can be used as a 
bioindicator to reflect anthropogenic activities in aquatic ecosystems (Gibbons et al 2014). By 
correlating the physicochemical water quality indices with microbial community diversity and 
composition in the CAWS river ecosystem areas we aimed to determine if anthropogenic 
disturbance could be characterized. Correlation analysis was performed between microbial 
metrics and physicochemical properties of the water including pH, dissolved oxygen, nitrate, 
water temperature, specific conductance, flow, ammonia, total organic carbon, turbidity, 
chlorophyll, and volatile suspended solids. 
 

0.0                                 0.13                            0.25
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FIGURE 33 Canonical Correspondence Analysis (CCA) between 
microbiome and the physicochemical properties. It shows five most 
influential factors driving the microbiome changes. 

 
 

Canonical Correspondence Analysis (CCA) revealed that temperature, NH3_N, DO, pH 
and NO2_NO3 are the most influential properties driving microbial changes (Figure 33). Using 
BEST analyses in microbiomeseq () package, we identified combination of variables (i.e., fecal 
coliform, VSS, Chlorophyll A, NH3_N, and DO) to best describe the variance in dominant phyla 
(i.e., Proteobacteria, Fusobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria) using 
combined data from 2013–2019. However, when analyzed separately the pre-disinfection  
(2013–2015) and post-disinfection datasets (2016–2019) revealed slight variations in the best 
suite of physicochemical properties describing microbiome variance. While, during pre-
disinfection phase, fecal coliforms, VSS, temperature, DO, chlorophyll A, NO2_NO3 remained 
the most influential set of variables, during the post-disinfection VSS, TOC, NH3_N, and 
chlorophyll A were the most important in describing variation in microbial diversity. Fecal 
coliforms data was identified as one of the most influential variables in driving microbial 
changes overall, however, in comparison to pre-disinfection phase, fecal coliforms data was not 
among the best set of variables in highlighting the change in total microbial diversity during 
post-disinfection phase. 
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Further using Spearman correlations, at the level of bacterial phylum (Figure 33), as 
expected Cyanobacteria (which contain chlorophyll A for photosynthesis) significantly 
positively correlated with chlorophyll A concentration. Both Cyanobacteria and Fusobacteria 
were significantly positively correlated with dissolved oxygen concentration. Fusobacteria and 
Firmicutes were positively correlated with ammonia concentration, while Chlamydiae and TM6 
positively correlated with nitrate and nitrite concentration (Figure 34). At the genus level 
(Figure 34), chlorophyll A concentration was significantly positively correlated with the 
cyanobacterium Synechococcus; interestingly, chlorophyll A concentration was significantly 
negatively correlated with genera associated with fecal and sewage biomarkers (Acinetobacter, 
Arcobacter, Bacteroides, Chryseobacterium, and Sulfurospirillum). Conductivity positively 
correlated with Thalassiosira, Rhodobacter, and Leadbetterella. Dissolved oxygen concentration 
positively correlated with Thalassiosira and negatively correlated with Methylocaldum, 
Dechloromonas, Cloacibacterium. Ammonia concentration was positively correlated with 
Trichococcus, Pseudomonas, Clostridium and Acinetobacter, suggesting greater concentration 
associated with sewage outfall. Nitrate and nitrite concentrations were positively correlated with 
Mycobacterium and Methylibium, the latter being potentially associated with environmental 
pollution. pH only had weak correlations, likely due to the fact that it barely fluctuated. Water 
temperature was significantly positively correlated with Synechococcus and Candidatus 
Aquiluna, likely due to cyanobacterial blooms in the summer, and negatively correlated with 
Trichococcus, Rhodobacter, Pseudomonas, Paludibacter, Flavobacterium, Clostridium, and 
Arcobacter, which were generally more abundant during wet-weather events, which may 
associated with reduced temperatures due to stormwater input. Phosphate concentration 
positively correlated with Mycobacterium, maybe due to association with effluent outfall. 
Similarly, turbidity and VSS, which increases during wet weather events and at the treated 
effluent outfall, was positively correlated with Trichococcus, Pedobacter, Clostridium, 
Cloacibacterium. 
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FIGURE 34 Correlation analyses based on Spearman Rank coefficient between microbial phyla 
and physicochemical properties of water samples. * represents all the statistically significant 
correlations. Red represents positive correlations, and blue represents negative correlations. The 
correlation scale varies between -1 to +1 representing R2 value of -100% to +100%. The * 
represents Benjamini-Hochberg FDR adjusted p-values ≤ 0.05. The ** represents Benjamini-
Hochberg FDR adjusted p-values ≤ 0.01. The *** represents Benjamini-Hochberg FDR adjusted 
p-values ≤ 0.001. 
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FIGURE 35 Correlation analyses based on Spearman Rank coefficient between microbial genera 
and physicochemical properties of water samples. *represents all the statistically significant 
correlations. Red represents positive correlations, and blue represents negative correlations. The 
correlation scale varies between -1 to +1 representing R2 value of -100% to +100%. The * 
represents Benjamini-Hochberg FDR adjusted p-values ≤ 0.05. The ** represents Benjamini-
Hochberg FDR adjusted p-values ≤ 0.01. The *** represents Benjamini-Hochberg FDR adjusted p-
values ≤ 0.001. 
 
 

We further identified correlations between ASVs and the above-mentioned properties 
(except pH which had no significant correlations): 
 

• Temperature: ASVs from Methylotenera mobilis were negatively correlated, 
while family Sphingobacteriaceae were positively correlated with increasing 
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temperature Methylotenera mobilis is involved in denitrification, but is grows 
best at room temperature (Mustakhimov et al. 2013). Sphingobacteriaceae has 
previously been shown to increase in abundance during summer months in 
river water (Bowers et al. 2012).  

 
• Dissolved Oxygen: ASVs belonging to Gemmatimonas and Fluviicola were 

positively correlated with dissolved oxygen. Gemmatimonas has no known 
association, but Fluviicola has previously been associated with elevated 
dissolved oxygen concentrations (J. Liu et al. 2015). Reduced dissolved 
oxygen tends to happen when nutrient concentrations promote heterotrophic 
bacterial blooms that elevate biological oxygen demand and create anaerobic 
conditions. 

 
• Ammonia: ASVs from genus Arcobacter and Acinetobacter were positively 

correlated with ammonia, whereas, ASVs belonging to Fluviicola and 
Oxalobacteraceae are negatively associated with ammonia. Activated sludge 
processing employs a mixed microbial consortium under aerobic conditions to 
remove carbon and nitrify ammonia, and is enriched in Arcobacter and 
Acinetobacter (Saunders et al. 2016). Fluviicola is a known N2 fixer and 
assimilates ammonium through ammonification and denitrification (Bentzon-
Tilia et al. 2015).  

 
• Total organic phosphorous: ASVs belonging to Sphingobacteriaceae, 

Actinomycetales, Paludibacter were positively correlated. Paludibacter, is a 
common activated sludge bacterium involved in phosphate metabolism 
(Zhou et al. 2016). Similarly, taxa associated with Sphingobacteriaceae and 
Actinomycetales are associated with biological phosphorous removal 
(Kamika, Azizi, and Tekere 2018). Hence, these bacteria are likely enriched at 
effluent outfall sites. 

 
• Volatile Suspended Solids: ASVs belonging to Rhodobacteraceae, 

Cloacibacterium, and Desulfobulbus are positively correlated, while ASVs 
belonging to Sediminibacterium are negatively correlated with VSS. The 
biomass solids in a biological wastewater reactor comprise total suspended 
solids (TSS) and volatile suspended solids (VSS). Rhodobacteraceae are 
known to be dominant across activate biomass and sediments in wastewater 
treatment plants (Pohlner et al. 2019). Cloacibacterium is involved in 
activated sludge and biomass in wastewater treatment plants, producing the 
exopolysacchrides that comprise 95% of the sludge (Klai et al. 2015). 
Desulfobulbus and Sediminibacterium are also abundant in activate sludge. 
Desulfobulbus performed S reduction in WRPs (Nascimento et al. 2018). 

 
• Total Organic Carbon: ASVs belonging to Oxalobacteraceae and 

Actinomycetales are negatively correlated with total organic carbon (TOC), 
while ASVs from Prevotella copri and Comamonadaceae are positively 
correlated with TOC. TOC is often used as a non-specific indicator of water 
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quality, with lower concentrations being better. Prevotella is usually 
associated with the human and animal gut, and so elevated levels of TOC and 
Prevotella might represent fecal contamination (Franke and Deppenmeier 
2018). Oxalobacteraceae and Actinomycetales can both metabolize complex 
carbon compounds, but their negative correlation with TOC may indicate 
negative association with TOC pollution. 

 
• Chlorophyll: ASVs from Actinomycetales, Mycobacterium are positively 

correlated with chlorophyll. Mycobacterial species are known to grow on 
aquatic plants and therefore may associate with algal blooms in the summer 
(Mougin, Tian, and Drancourt 2015). 

 
• Conductivity: ASVs from Gemmatimonas, Rhodobacter, Methylotenera are 

positively correlated with conductivity. Rhodobacter species are non-sulfur 
bacteria which are known to convert dinitrogen into ammonia with production 
of H2, which in turn increases the water conductivity (Tao et al. 2012). 
Methylotenera is a methane utilizing bacteria, which indicate at high methane 
concentrations which in turn means increased conductivity of water 
(Wright et al. 2017). Gemmatimonas is known to be associated with 
conductivity although in case of soil/sand and not in water (Shi et al. 2017). 

 
• Fecal coliforms: ASVs from Enterobacteriaceae, Cloacibacterium, 

Parabacteroides, Acinetobacter, Pseudomonas, Bacteroides, Agrobacterium, 
Dialister, and Hydrogenophaga are positively correlated with fecal coliforms. 
Enterococci, Bacteroides, Acinetobacter, Cloacibacterium and 
Parabacteroides are already well known fecal indicators and have been 
isolated from human stool (Leight, Crump, and Hood 2018; Fisher et al. 2015; 
García-Bayona and Comstock 2019; Zhang, He, and Yan 2015). These results 
supplement the previous reports provide a definite assessment of recreational 
water quality and human health risk. Agrobacterium, although not a fecal 
indicator bacteria, is known to exist in wastewater treatment plants where it is 
involved in denitrification under aerobic conditions (Ma et al. 2016). These 
results also highlight the potential of using microbial taxa as bioindicators for 
fecal nitrogen as water quality indicators. 

 
• Turbidity: ASVs belonging to Pseudomonas, Geobacter, Agrobacterium, 

Cellvibrio are positively correlated with turbidity. Pseudomonas is normally 
associated with turbid events after rainfall and stormwater influx (Flores 
Ribeiro et al. 2014). Similarly, Geobacter is associated with wastewater 
treatment plants (Tejedor-Sanz et al. 2018), and so this correlation could be 
associated with effluent from the plant. 
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1.4 CAWS MICROBIOME RECOMMENDATIONS FOR WATER QUALITY 
MANAGEMENT FOR RIVER HEALTH AND RECREATION USE 

 
Decreasing water quality, for example through riverine eutrophication due to agricultural 

run-off, is a constant threat to the global human population. In the United States, southern 
Californian droughts are a major threat, promoting water reuse through wastewater treatment 
plants. Reuse and treatment of municipal wastewater instead of discharge to surface waters 
augments the water supply of communities reliably, safely, and economically. However, 
recycling wastewater promotes public concern over contamination and pollution, and therefore 
requires system engineering and monitoring to provide chemical and pathogen control. 
Diagnostic monitoring for bacterial and eukaryotic pathogens within wastewater effluent still 
uses traditional methods such as coliform plate counting (Fu et al., 2010); while still valuable, 
these approaches could be augmented and contextualized using DNA sequencing, which can 
broaden detection to include microorganisms and viruses that are not detected by traditional 
cultivation approaches (Staley and Konopka, 1985; Santos et al., 2009; Leddy et al., 2017). The 
use of high-throughput DNA sequencing for microbial water quality analysis was recently 
summarized with respect to potable water reuse (Leddy et al., 2018). Essentially, while knowing 
the changing abundance of specific pollution markers (e.g., sewage and fecal-associated bacteria) 
is extremely powerful, being able to characterize the broader microbial and viral community, 
including the presence of functional metabolic pathways, including resistance and virulence 
markers, can significantly improve existing efforts by further stratifying water quality estimates 
and improving the assessment of engineering and treatment innovation performance. This study 
presents a systematic effort to determine the potential of 16S rRNA amplicon and shotgun 
metagenomic sequencing to detect the broad-spectrum influence of water treatment innovations 
on the microbiome of a complex urban waterway, as well as to provide direct comparison against 
traditional coliform plate count data. This study represents the most comprehensive and longest 
characterization of the microbiome of an urban waterway yet attempted. 
 

This study concludes that the implementation of state-of-the-art disinfection, and 
establishment of the TCR in the Calumet WRP service area, have fundamentally altered the 
microbial composition and dynamics of the CAWS. This change primarily consists of a 
significant reduction in the proportion of sewage and fecal-associated bacteria in the river system 
around WRP effluent outfalls. Traditional techniques validated these results; so, what did the 
molecular approaches add to the coliform counts analysis? For the most part, the use of 
16S rRNA amplicon sequencing and shotgun metagenomics has provided more detail. While the 
traditional analysis evidenced the removal of potential pathogens, the molecular approach has 
provided categorical identification of those potential pathogens and identified their virulence and 
resistance pathways. These extra data provide more sophisticated diagnostic monitoring, 
especially as multi-drug resistant infectious disease transmission has become a serious public 
health concern. Identifying which bacterial species are being transmitted through the sewage 
system, and which antibiotics they are resistant to, can provide an early warning system for the 
spread of such infections in the human population. While the analysis of the water system is 
likely too far downstream, this proof of principle study supports the application of these 
approaches further upstream in the wastewater collection system. However, the characterization 
of exactly which potential pathogens are present in a water body, and how their proportion is 
linked to physicochemical characteristics and season, could potentially be informative in 
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management the recreational use of that system, provide a more detailed water quality 
assessment. To validate this potential, future studies should attempt to combine these 
sophisticated analyses with epidemiological studies, to deliver accurate risk of infection 
assessments. 
 
 While improving the accuracy and specificity of potential pathogen detection is valuable, 
the ability to survey a broader range of microbial elements using molecular approaches, provides 
a compelling advantage over traditional plate counts. This study demonstrated the 
microorganisms and their functions that associate with reduced sewage pollution, both across the 
CAWS prior to implementation of disinfection and the TCR, and the specific enrichment of these 
markers following these implementations. Diagnosis of urban river ‘health’ on the basis of the 
abundance of potential pathogens alone misses out on the potential to characterize ways to 
optimize metrics that define ‘health’. For example, just because potential pathogen load has 
decreased does not mean that a river system is functional under optimal ecological conditions. 
Many other anthropogenic stressors can impact riverine ecology, and the microbiome acts as a 
highly responsive sentinel (a ‘canary in a coal mine’) to these effectors. As such, monitoring the 
broader microbial community and its functional metabolic potential provides a more detailed 
assessment of river ecosystem quality, which should be optimized to ensure maximum benefit to 
urban society. While this study provides a solid baseline against which to identify compelling 
biomarkers of riverine health, further studies will need to be done to determine how fine-scale 
manipulation of physicochemical parameters impacts these health metrics. Also, the emergent 
properties of improved riverine health, such as nutrient recycling, fish stocks, control of insect 
vectors of disease, will need to be quantified in association with such interventions. However, 
the potential for using molecular characterization of the microbiome as a whole to create such 
metrics of health is great and could dramatically transform the management of urban waterways 
from reactive to proactive management. 
 

The other major innovation is the ability of these molecular approaches to create a more 
detailed exploration of the origin of different microbial taxa in the CAWS water column. Source 
tracking of potential pollutants and microbial contaminants can be done accurately and 
quantitatively using traditional qPCR methods, but this requires prior knowledge of the target 
organism and the molecular markers that can differentiate it from other, potentially very similar 
species. Using 16S rRNA amplicon sequencing, with sequences identified to the level of exact-
sequence variant (ASVs; 100% nucleotide identify fragments) it was possible to widely 
characterize the probable source of different organisms in the CAWS data. Using a Bayesian 
algorithm called SourceTracker we can identify the source of between 60-80% of the thousands 
of ASVs in a sample, creating a detailed snapshot of the sources which contribute to the diverse 
microbial community in that sample. Traditional approaches cannot come close to this level of 
resolution without huge financial investment. While not as accurate as traditional approach, and 
certainly not quantitative, it does augment such data, contextualizing the potential sources of key 
organisms, and providing a broader understanding of the origin of specific microbial pollution. 
Additionally, it may help elucidate situations whereby qPCR approaches cannot differentiate 
between sources of fecal pollution, for example, mammalian wild animals and human feces. This 
is helped by access to vast ‘source’ databases, such as those held by the Earth Microbiome 
Project. These can help to identify nuanced pollution, such as that associated with migrating 
birds, or seasonally differentiated runoff waste from urban grasslands and agricultural fields. 
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In summary, 16S rRNA amplicon and metagenomic sequencing of the microbial 
communities in the CAWS has provided a detailed characterization that substantially improves 
our understanding of the complexity of the Chicago river ecosystem, and how it responds to 
implementation of disinfection and the TCR by the District. By providing better characterization 
of pathogens and their virulence/resistance profile, expanding the options of stratification of 
water quality to include ‘healthy’ microbial biomarkers for optimization, and the increased 
breadth of molecular source tracking, these approaches augment existing water quality 
assessment tools. However, more research is needed if we are to be able to implement these tools 
effectively and reliably to produce actionable evidence to the District. 
 
 
1.5 SUMMARY AND DISCUSSION 
 

Microbial communities are key players in maintaining the health of the CAWS. 
Traditional laboratory-culture methods such as fecal bacteria count and PCR-based methods 
have been extensively used to characterize the CAWS microbial quality for regulatory purposes; 
however, these methods are limited in their ability to resolve the source of fecal and/or sewage 
contamination. Additionally, these methods do not completely describe the diversity of microbial 
communities present in the CAWS. This study, which started in 2013, aimed to better understand 
the composition, biogeography and sources of the microbial community associated with the 
CAWS using state-of-the-art 16S rRNA gene amplicon- and metagenome-based sequencing. The 
study also aims at determining if environmental physicochemical parameter such as flow, 
rainfall, temperature, water chemistry etc., can describe the distribution of bacteria across the 
CAWS and through time. In addition to investigating the microbial dynamics between different 
collection sites during different weather conditions, we have further focused on the impact of the 
MWRD’s improvement efforts. MWRD implemented disinfection systems at Calumet and 
O’Brien in 2016, as well as beginning operation the Calumet Tunnel and Reservoir Plan (TARP) 
System’s Thornton Composite Reservoir (TCR) at the end of 2015. The TCR in the Calumet 
WRP service area was constructed to capture the CSO discharge during the rainfall events that 
otherwise flow into the river system. Therefore, using molecular sequencing we have attempted 
to interpret the bacterial taxonomic and functional dynamics both before and after disinfection 
and TARP TCR implementation. 
 

16S rRNA amplicon sequencing was done on 2,706 samples collected from sediment, 
water, treated effluent, raw sewage and fish samples of the CAWS from 2013 to 2019. 
Compositional analysis of microbial communities demonstrated distinct distribution patterns 
across different sampling locations (biogeography) and sample types (river water, sediment, 
effluent, etc.). The community profiles appeared to be stable (in their diversity and composition) 
across these sampling years and seasons, except during wet weather events and following the 
disinfection/TARP implementation. Our analysis also showed that microorganisms associated 
with final WRP effluent (included human fecal or sewage contamination indicators like 
Acinetobacter and Arcobacter) from secondary treatment can be tracked downstream and 
typically showed increased abundance in proximity to the secondary treated final effluent 
location. For both sediment and river water samples collected across the CAWS, a significant 
decrease (p < 0.05) in alpha diversity (number of taxa within a single sample) was observed in 
2016 (first year post disinfection) when compared to 2015, however, diversity recovered in 2017 
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and stayed stable through 2019. Taxa associated with fecal and sewage samples, such as 
Acinetobacter, Arcobacter and Bacteroides, reduced significantly in proportion post-
disinfection/TARP (i.e., 2016–2019) when compared to the pre-disinfection phase (2013–2015). 
These results thus highlight the efficiency of disinfection technology that was employed at both 
Calumet and O’Brien as well as the Calumet TARP system which contained the number of CSOs 
significantly especially at the Calumet river system. This impact is particularly evident at sites 
immediate downstream sites of both WRPs (Calumet, Site#76; O’Brien, Site#36), which also 
showed a significant proportional increase in fresh-water indicators such as Flavobacterium, 
which was compounded year on year post intervention. 
 

When focusing on the difference between wet and dry events, Calumet shows an overall 
trend of an increased proportion of Bacteroidetes and Firmicutes (Arcobacter and Acinetobacter) 
during the wet events (both with and without CSOs), which significantly decreased post-TARP 
(Gallagher and Wasik, 2019). These taxonomic proportional changes correlated well with 
quantitative fecal coliform data, while river water associated taxa such as Synechococcus, 
Sediminibacterium, and Fluviicola correlated negatively with increasing coliforms. 
 

Microbial source tracking using the molecular data suggested that the majority of 
microbial diversity in CAWS water samples can be largely attributed to effluent, sewage, CAWS 
sediment, river water, and fish associated samples, with animal or human associated feces 
contribution being extremely low. The taxa that contributed to effluent and sewage signals were 
mostly bacteria that are enriched by the treatment process and sewage infrastructure, and are not 
considered to be human pathogens. 
 

Shotgun metagenomic analysis was applied to 71 samples, adding taxonomic resolution 
and functional metabolic pathway reconstruction to the existing 16S rRNA analysis. The 
metagenomic data recapitulated the trends observed with 16S rRNA amplicon data, for example, 
demonstrating an increase in Acinetobacter, Arcobacter, and Thiomonas during wet weather 
events. The metabolic potential analysis demonstrated that overall functional pathways are 
dominated by conserved sore metabolic functions which are found in nearly all bacteria, and so 
overall functional pathway profiles did not significantly change across time or weather. 
However, 30 virulence associated genes were examined and demonstrated very low abundance 
(0–0.25%) and little variation over time (2013–2019). 
 

The results from this seven-year long microbiome study have significantly augmented the 
District’s existing analysis, and provided further evidence that the District’s improvement efforts 
such as large scale disinfection technology and the TCR led to significant improvement in water 
quality, as indexed by the proportion of known pathogens, natural river water biomarkers, 
sources of microbial pollution, and functional pathways. 
 
  



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

66 

1.6 STUDY LIMITATIONS 
 

A key step in understanding microbial community structure, dynamics, and how 
organisms might influence or be influenced by their surroundings is to classify DNA sequences 
taxonomically or phylogenetically. To date, most studies of microbial communities in systems 
ranging from the river systems to the human gut have depended on a single gene, the 16S small 
subunit ribosomal RNA (rRNA) gene. Massively parallel sequencing methods are increasingly 
being applied to the characterization of microbial communities based on amplification of this 
gene and have led to a better appreciation of extant biodiversity; however, the 16S rRNA -based 
techniques are known to be limited by the short read lengths obtained, limited resolution of the 
16S rRNA gene among closely related species, and given the prevalence of horizontal gene 
transfer and the difficulty inherent in defining bacterial species. In order to overcome these 
biases, metagenome sequencing approaches i.e., whole genome shotgun (WGS) sequencing are 
commonly used to describe microbial communities, without the biases inherent to PCR 
amplification of a single gene. Therefore, in this study, shotgun sequencing was employed to 
supplement the 16S rRNA gene sequencing results. Whole genome shotgun (WGS) 
metagenomic approaches provide robust estimates of microbial community composition and 
diversity without the need to target and amplify a specific gene. Additionally, the assignment of 
taxonomic origin to microbiome sequences continues to be a hurdle and the confidence with 
which 16S rRNA gene sequences can be assigned to deep taxonomic levels such as genus can be 
low. And therefore, by assigning taxonomic origin to metagenomic sequences, we were able to 
get a more detailed sense of the community structure than by 16S rRNA gene sequencing alone. 
As long as sufficient reference genomes exist for identification, the metagenome performs well 
in describing the taxonomic composition of a sample. In addition, metagenomics offers the 
potential to investigate 16S rRNA gene fragments recovered in metagenomic reads without 
amplification. Furthermore, shotgun data can explore the metabolic potential of the resident 
bacteria due to its greater genomic and gene coverage and data output. 
 
 
1.7 REFERENCES 
 
Amir, Amnon, Daniel McDonald, Jose A. Navas-Molina, Evguenia Kopylova, James T. Morton, 
Zhenjiang Zech Xu, Eric P. Kightley, et al. 2017. “Deblur Rapidly Resolves Single-Nucleotide 
Community Sequence Patterns.” MSystems 2 (2): e00191-16. 
https://doi.org/10.1128/mSystems.00191-16. 
 
Anderson Marti J. 2014. “Permutational Multivariate Analysis of Variance (PERMANOVA).” 
Wiley StatsRef: Statistics Reference Online, Major Reference Works, , April. 
https://doi.org/10.1002/9781118445112.stat07841. 
 
Bentzon-Tilia, Mikkel, Ina Severin, Lars H. Hansen, and Lasse Riemann. 2015. “Genomics and 
Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from Estuarine Surface 
Water.” MBio 6 (4): e00929-15. https://doi.org/10.1128/mBio.00929-15. 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

67 

Bokulich, Nicholas A., Sathish Subramanian, Jeremiah J. Faith, Dirk Gevers, Jeffrey I. Gordon, 
Rob Knight, David A. Mills, and J. Gregory Caporaso. 2013. “Quality-Filtering Vastly Improves 
Diversity Estimates from Illumina Amplicon Sequencing.” Nature Methods 10 (1): 57–59. 
https://doi.org/10.1038/nmeth.2276. 
 
Bowers, Robert M., Ian B. McCubbin, Anna G. Hallar, and Noah Fierer. 2012. “Seasonal 
Variability in Airborne Bacterial Communities at a High-Elevation Site.” Atmospheric 
Environment 50 (April): 41–49. https://doi.org/10.1016/j.atmosenv.2012.01.005. 
 
Caporaso, J. Gregory, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D. Bushman, 
Elizabeth K. Costello, Noah Fierer, et al. 2010. “QIIME Allows Analysis of High-Throughput 
Community Sequencing Data.” Nature Methods 7 (5): 335–36. 
https://doi.org/10.1038/nmeth.f.303. 
 
Chopyk, Jessica, Sarah Allard, Daniel J. Nasko, Anthony Bui, Emmanuel F. Mongodin, and 
Amy R. Sapkota. 2018. “Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial 
and Viral Populations.” Frontiers in Microbiology 9. https://doi.org/10.3389/fmicb.2018.00792. 
 
Das, Tapas K. 2001. “Ultraviolet Disinfection Application to a Wastewater Treatment Plant.” 
Clean Products and Processes 3 (2): 69–80. https://doi.org/10.1007/s100980100108. 
 
Eraqi, Walaa A., Marwa T. ElRakaiby, Salwa A. Megahed, Noha H. Yousef, Mostafa S. 
Elshahed, and Aymen S. Yassin. 2018. “The Nile River Microbiome Reveals a Remarkably 
Stable Community Between Wet and Dry Seasons, and Sampling Sites, in a Large Urban 
Metropolis (Cairo, Egypt).” OMICS: A Journal of Integrative Biology 22 (8): 553–64. 
https://doi.org/10.1089/omi.2018.0090. 
 
Falk, N., T. Reid, A. Skoyles, A. Grgicak-Mannion, K. Drouillard, and C. G. Weisener. 2019. 
“Microbial Metatranscriptomic Investigations across Contaminant Gradients of the Detroit 
River.” Science of The Total Environment 690 (November): 121–31. 
https://doi.org/10.1016/j.scitotenv.2019.06.451. 
 
Feng, Bi-Wei, Xiao-Ran Li, Jin-Hui Wang, Zi-Ye Hu, Han Meng, Ling-Yun Xiang, and Zhe-
Xue Quan. 2009. “Bacterial Diversity of Water and Sediment in the Changjiang Estuary and 
Coastal Area of the East China Sea.” FEMS Microbiology Ecology 70 (2): 236–48. 
https://doi.org/10.1111/j.1574-6941.2009.00772.x. 
 
Fierer, N. J.W. Leff, B.J. Adams, U. N. Nielsen, S. Thomas Bates, C.L. Lauber, S. Owens, 
J.A. Gilbert, D.H. Wall, J. G. Caporaso. 2012. Cross-biome metagenomic analyses of soil 
microbes. Proceedings of the National Academy of Sciences 109 (52) 21390-21395; DOI: 
10.1073/pnas.1215210110 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

68 

Fisher, Jenny C., A. Murat Eren, Hyatt C. Green, Orin C. Shanks, Hilary G. Morrison, Joseph H. 
Vineis, Mitchell L. Sogin, and Sandra L. McLellan. 2015. “Comparison of Sewage and Animal 
Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple 
Taxonomic Groups.” Applied and Environmental Microbiology 81 (20): 7023–33. 
https://doi.org/10.1128/AEM.01524-15. 
 
Fisher, Jenny C., Arturo Levican, María J. Figueras, and Sandra L. McLellan. 2014. “Population 
Dynamics and Ecology of Arcobacter in Sewage.” Frontiers in Microbiology 5 (November). 
https://doi.org/10.3389/fmicb.2014.00525. 
 
Flores Ribeiro, Angela, Josselin Bodilis, Lise Alonso, Sylvaine Buquet, Marc Feuilloley, 
Jean-Paul Dupont, and Barbara Pawlak. 2014. “Occurrence of Multi-Antibiotic Resistant 
Pseudomonas Spp. in Drinking Water Produced from Karstic Hydrosystems.” The Science of the 
Total Environment 490 (August): 370–78. https://doi.org/10.1016/j.scitotenv.2014.05.012. 
 
Franke, Thomas, and Uwe Deppenmeier. 2018. “Physiology and Central Carbon Metabolism of 
the Gut Bacterium Prevotella Copri.” Molecular Microbiology 109 (4): 528–40. 
https://doi.org/10.1111/mmi.14058. 
 
Franzosa, Eric A., Lauren J. McIver, Gholamali Rahnavard, Luke R. Thompson, Melanie 
Schirmer, George Weingart, Karen Schwarzberg Lipson, et al. 2018. “Species-Level Functional 
Profiling of Metagenomes and Metatranscriptomes.” Nature Methods 15 (11): 962. 
https://doi.org/10.1038/s41592-018-0176-y. 
 
Gallagher, D. and J. Wasik. 2019 Post Construction Monitoring Report for the Calumet Tunnel 
and Reservoir Plan System. Monitoring and research Department Draft Report. Metropolitan 
WRP District of Greater Chicago. Pending IEPA review and publication. 
 
García-Bayona, Leonor, and Laurie E. Comstock. 2019. “Streamlined Genetic Manipulation of 
Diverse Bacteroides and Parabacteroides Isolates from the Human Gut Microbiota.” MBio 10 
(4): e01762-19. https://doi.org/10.1128/mBio.01762-19. 
 
Gibbons SM, Jones E, Bearquiver A, Blackwolf F, Roundstone W, Scott N, Hooker J, Madsen 
R, Coleman ML, Gilbert JA. (2014) Human and Environmental Impacts on River Sediment 
Microbial Communities. PLoS ONE 9(5): e97435. doi:10.1371/journal.pone.0097435 
 
Heinrich, Friederike, Alexander Eiler, and Stefan Bertilsson. 2013. “Seasonality and 
Environmental Control of Freshwater SAR11 (LD12) in a Temperate Lake (Lake Erken, 
Sweden).” Aquatic Microbial Ecology 70 (1): 33–44. 
 
Hoshino, T., T. Terahara, S. Tsuneda, A. Hirata, and Y. Inamori. 2005. “Molecular Analysis of 
Microbial Population Transition Associated with the Start of Denitrification in a Wastewater 
Treatment Process.” Journal of Applied Microbiology 99 (5): 1165–75. 
https://doi.org/10.1111/j.1365-2672.2005.02698.x. 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

69 

Hu, Anyi, Xiaoyong Yang, Nengwang Chen, Liyuan Hou, Ying Ma, and Chang-Ping Yu. 2014. 
“Response of Bacterial Communities to Environmental Changes in a Mesoscale Subtropical 
Watershed, Southeast China.” The Science of the Total Environment 472 (February): 746–56. 
https://doi.org/10.1016/j.scitotenv.2013.11.097. 
 
Huber, Bettina, Bastian Herzog, Jörg E. Drewes, Konrad Koch, and Elisabeth Müller. 2016. 
“Characterization of Sulfur Oxidizing Bacteria Related to Biogenic Sulfuric Acid Corrosion in 
Sludge Digesters.” BMC Microbiology 16 (July). https://doi.org/10.1186/s12866-016-0767-7. 
 
Huttenhower, C., Gevers, D., Knight, R. et al. 2012. Structure, function and diversity of the 
healthy human microbiome. Nature 486, 207–214. https://doi.org/10.1038/nature11234 
 
Jackson, Colin R., Justin J. Millar, Jason T. Payne, and Clifford A. Ochs. 2014. “Free-Living and 
Particle-Associated Bacterioplankton in Large Rivers of the Mississippi River Basin 
Demonstrate Biogeographic Patterns.” Applied and Environmental Microbiology 80 (23): 7186–
95. https://doi.org/10.1128/AEM.01844-14. 
 
Jezberová, Jitka, Jan Jezbera, Petr Znachor, Jiří Nedoma, Vojtěch Kasalický, and Karel Šimek. 
2017. “The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence 
from Spatiotemporal Succession in a Canyon-Shaped Reservoir.” Applied and Environmental 
Microbiology 83 (21). https://doi.org/10.1128/AEM.01530-17. 
 
Jiang, Hongchen, Hailiang Dong, Gengxin Zhang, Bingsong Yu, Leah R. Chapman, and 
Matthew W. Fields. 2006. “Microbial Diversity in Water and Sediment of Lake Chaka, an 
Athalassohaline Lake in Northwestern China.” Applied and Environmental Microbiology 72 (6): 
3832–45. https://doi.org/10.1128/AEM.02869-05. 
 
Kamika, Ilunga, Shohreh Azizi, and Memory Tekere. 2018. “Comparing Bacterial Diversity in 
Two Full-Scale Enhanced Biological Phosphate Removal Reactors Using 16S Amplicon 
Pyrosequencing.” Polish Journal of Environmental Studies 27 (2): 709–45. 
https://doi.org/10.15244/pjoes/69029. 
 
Kasalický, Vojtěch, Jan Jezbera, Martin W. Hahn, and Karel Šimek. 2013. “The Diversity of the 
Limnohabitans Genus, an Important Group of Freshwater Bacterioplankton, by Characterization 
of 35 Isolated Strains.” PLoS ONE 8 (3). https://doi.org/10.1371/journal.pone.0058209. 
 
Kim, Michael H., Oliver J. Hao, and Nam S. Wang. 1997. “Acinetobacter Isolates from Different 
Activated Sludge Processes: Characteristics and Neural Network Identification.” FEMS 
Microbiology Ecology 23 (3): 217–27. https://doi.org/10.1111/j.1574-6941.1997.tb00404.x. 
 
Klai, Nouha, Song Yan, Rajeshwar Dayal Tyagi, and Rao Y. Surampalli. 2015. “EPS Producing 
Microorganisms from Municipal Wastewater Activated Sludge.” Journal of Petroleum & 
Environmental Biotechnology 7: 1000255. 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

70 

Knights, Dan, Justin Kuczynski, Emily S. Charlson, Jesse Zaneveld, Michael C. Mozer, Ronald 
G. Collman, Frederic D. Bushman, Rob Knight, and Scott T. Kelley. 2011. “Bayesian 
Community-Wide Culture-Independent Microbial Source Tracking.” Nature Methods 8 (9): 761–
63. https://doi.org/10.1038/nmeth.1650. 
 
Lee, Jangho, Banghyo Park, Sung-Geun Woo, Juyoun Lee, and Joonhong Park. 2014. 
“Prosthecobacter Algae Sp. Nov., Isolated from Activated Sludge Using Algal Metabolites.” 
International Journal of Systematic and Evolutionary Microbiology 64 (Pt 2): 663–67. 
https://doi.org/10.1099/ijs.0.052787-0. 
 
Lee, Philip O., Sandra L. McLellan, Linda E. Graham, and Erica B. Young. 2015. “Invasive 
Dreissenid Mussels and Benthic Algae in Lake Michigan: Characterizing Effects on Sediment 
Bacterial Communities.” FEMS Microbiology Ecology 91 (1): 1–12. 
https://doi.org/10.1093/femsec/fiu001. 
 
Leight, Andrew K., Byron C. Crump, and Raleigh R. Hood. 2018. “Assessment of Fecal 
Indicator Bacteria and Potential Pathogen Co-Occurrence at a Shellfish Growing Area.” 
Frontiers in Microbiology 9 (March). https://doi.org/10.3389/fmicb.2018.00384. 
 
Liu, Jiwen, Bingbing Fu, Hongmei Yang, Meixun Zhao, Biyan He, and Xiao-Hua Zhang. 2015. 
“Phylogenetic Shifts of Bacterioplankton Community Composition along the Pearl Estuary: The 
Potential Impact of Hypoxia and Nutrients.” Frontiers in Microbiology 6. 
https://doi.org/10.3389/fmicb.2015.00064. 
 
Liu, Yan, Tong Zhang, and Herbert H. P. Fang. 2005. “Microbial Community Analysis and 
Performance of a Phosphate-Removing Activated Sludge.” Bioresource Technology 96 (11): 
1205–14. https://doi.org/10.1016/j.biortech.2004.11.003. 
 
Lozupone, Catherine, Manuel E Lladser, Dan Knights, Jesse Stombaugh, and Rob Knight. 2011. 
“UniFrac: An Effective Distance Metric for Microbial Community Comparison.” The ISME 
Journal 5 (2): 169–72. https://doi.org/10.1038/ismej.2010.133. 
 
Ma, Tao, Qian Chen, Mengyao Gui, Can Li, and Jinren Ni. 2016. “Simultaneous Denitrification 
and Phosphorus Removal by Agrobacterium Sp. LAD9 under Varying Oxygen Concentration.” 
Applied Microbiology and Biotechnology 100 (7): 3337–46. https://doi.org/10.1007/s00253-015-
7217-6. 
 
Mandal, Siddhartha, Will Van Treuren, Richard A. White, Merete Eggesbø, Rob Knight, and 
Shyamal D. Peddada. 2015. “Analysis of Composition of Microbiomes: A Novel Method for 
Studying Microbial Composition.” Microbial Ecology in Health and Disease 26 (May). 
https://doi.org/10.3402/mehd.v26.27663. 
 
Marotz, Clarisse, Amnon Amir, Greg Humphrey, James Gaffney, Grant Gogul, and Rob Knight. 
2017. “DNA Extraction for Streamlined Metagenomics of Diverse Environmental Samples.” 
BioTechniques 62 (6): 290–93. https://doi.org/10.2144/000114559. 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

71 

McLain, Jean E. T., Channah M. Rock, Kathleen Lohse, and James Walworth. 2011. “False-
Positive Identification of Escherichia Coli in Treated Municipal Wastewater and Wastewater-
Irrigated Soils.” Canadian Journal of Microbiology 57 (10): 775–84. 
https://doi.org/10.1139/w11-070. 
 
McLellan, Sandra L., Jenny C. Fisher, and Ryan J. Newton. 2015. “The Microbiome of Urban 
Waters.” International Microbiology: The Official Journal of the Spanish Society for 
Microbiology 18 (3): 141–49. https://doi.org/10.2436/20.1501.01.244. 
 
McLellan, S.L., S.M. Huse, S.R. Mueller-Spitz, E.N. Andreishcheva, and M.L. Sogin. 2010. 
“Diversity and Population Structure of Sewage Derived Microorganisms in Wastewater 
Treatment Plant Influent.” Environmental Microbiology 12 (2): 378–92. 
https://doi.org/10.1111/j.1462-2920.2009.02075.x. 
 
Minich, Jeremiah J., Greg Humphrey, Rodolfo A. S. Benitez, Jon Sanders, Austin Swafford, Eric 
E. Allen, and Rob Knight. 2018. “High-Throughput Miniaturized 16S RRNA Amplicon Library 
Preparation Reduces Costs While Preserving Microbiome Integrity.” MSystems 3 (6). 
https://doi.org/10.1128/mSystems.00166-18. 
 
Moon, Kira, Ilnam Kang, Suhyun Kim, Sang-Jong Kim, and Jang-Cheon Cho. 2018. “Genomic 
and Ecological Study of Two Distinctive Freshwater Bacteriophages Infecting a 
Comamonadaceae Bacterium.” Scientific Reports 8 (1): 1–9. https://doi.org/10.1038/s41598-018-
26363-y. 
 
Mougin, Benjamin, Roger B. D. Tian, and Michel Drancourt. 2015. “Tropical Plant Extracts 
Modulating the Growth of Mycobacterium Ulcerans.” PLOS ONE 10 (4): e0124626. 
https://doi.org/10.1371/journal.pone.0124626. 
 
Mustakhimov, Ildar, Marina G. Kalyuzhnaya, Mary E. Lidstrom, and Ludmila Chistoserdova. 
2013. “Insights into Denitrification in Methylotenera Mobilis from Denitrification Pathway and 
Methanol Metabolism Mutants.” Journal of Bacteriology 195 (10): 2207–11. 
https://doi.org/10.1128/JB.00069-13. 
 
Nascimento, Altina Lacerda, Adijailton Jose Souza, Pedro Avelino Maia Andrade, Fernando 
Dini Andreote, Aline Renée Coscione, Fernando Carvalho Oliveira, and Jussara Borges 
Regitano. 2018. “Sewage Sludge Microbial Structures and Relations to Their Sources, 
Treatments, and Chemical Attributes.” Frontiers in Microbiology 9. 
https://doi.org/10.3389/fmicb.2018.01462. 
 
Newton, Ryan J., Sandra L. McLellan, Deborah K. Dila, Joseph H. Vineis, Hilary G. Morrison, 
A. Murat Eren, and Mitchell L. Sogin. 2015. “Sewage Reflects the Microbiomes of Human 
Populations.” MBio 6 (2). https://doi.org/10.1128/mBio.02574-14. 
 
Payne, Jason T., Justin J. Millar, Colin R. Jackson, and Clifford A. Ochs. 2017. “Patterns of 
Variation in Diversity of the Mississippi River Microbiome over 1,300 Kilometers.” PLOS ONE 
12 (3): e0174890. https://doi.org/10.1371/journal.pone.0174890. 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

72 

Pohlner, Marion, Leon Dlugosch, Bernd Wemheuer, Heath Mills, Bert Engelen, and Brandi Kiel 
Reese. 2019. “The Majority of Active Rhodobacteraceae in Marine Sediments Belong to 
Uncultured Genera: A Molecular Approach to Link Their Distribution to Environmental 
Conditions.” Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.00659. 
 
Read, Daniel S., Hyun S. Gweon, Michael J. Bowes, Lindsay K. Newbold, Dawn Field, Mark J. 
Bailey, and Robert I. Griffiths. 2015. “Catchment-Scale Biogeography of Riverine 
Bacterioplankton.” The ISME Journal 9 (2): 516–26. https://doi.org/10.1038/ismej.2014.166. 
 
Sangwan N, Zarraonaindia I, Hampton-Marcel JT, Ssegane H, Eshoo TW, Rijal G, Negri MC, 
Gilbert JA. 2016. Differential Functional Constraints Cause Strain-Level Endemism in 
Polynucleobacter populations. mSystems. DOI: 10.1128/mSystems.00003-16 
 
Saunders, Aaron M., Mads Albertsen, Jes Vollertsen, and Per H. Nielsen. 2016. “The Activated 
Sludge Ecosystem Contains a Core Community of Abundant Organisms.” The ISME Journal 10 
(1): 11–20. https://doi.org/10.1038/ismej.2015.117. 
 
Savio, Domenico, Lucas Sinclair, Umer Z. Ijaz, Juraj Parajka, Georg H. Reischer, Philipp 
Stadler, Alfred P. Blaschke, et al. 2015. “Bacterial Diversity along a 2600 Km River 
Continuum.” Environmental Microbiology 17 (12): 4994–5007. https://doi.org/10.1111/1462-
2920.12886. 
 
Segata, Nicola, Levi Waldron, Annalisa Ballarini, Vagheesh Narasimhan, Olivier Jousson, and 
Curtis Huttenhower. 2012. “Metagenomic Microbial Community Profiling Using Unique Clade-
Specific Marker Genes.” Nature Methods 9 (8): 811–14. https://doi.org/10.1038/nmeth.2066. 
 
Shchegolkova, Nataliya M., George S. Krasnov, Anastasia A. Belova, Alexey A. Dmitriev, 
Sergey L. Kharitonov, Kseniya M. Klimina, Nataliya V. Melnikova, and Anna V. Kudryavtseva. 
2016. “Microbial Community Structure of Activated Sludge in Treatment Plants with Different 
Wastewater Compositions.” Frontiers in Microbiology 7 (February). 
https://doi.org/10.3389/fmicb.2016.00090. 
 
Shi, Peili, Yuxiu Zhang, Zhenqi Hu, Kang Ma, Hao Wang, and Tuanyao Chai. 2017. “The 
Response of Soil Bacterial Communities to Mining Subsidence in the West China Aeolian Sand 
Area.” https://pubag.nal.usda.gov/catalog/5825226. 
 
Silva-Bedoya, Lina Marcela, María Solange Sánchez-Pinzón, Gloria Ester Cadavid-Restrepo, 
and Claudia Ximena Moreno-Herrera. 2016. “Bacterial Community Analysis of an Industrial 
Wastewater Treatment Plant in Colombia with Screening for Lipid-Degrading Microorganisms.” 
Microbiological Research 192 (November): 313–25. 
https://doi.org/10.1016/j.micres.2016.08.006. 
 
Sommers, Pacifica, John L. Darcy, Dorota L. Porazinska, Eli M. S. Gendron, Andrew G. 
Fountain, Felix Zamora, Kim Vincent, et al. 2019. “Comparison of Microbial Communities in 
the Sediments and Water Columns of Frozen Cryoconite Holes in the McMurdo Dry Valleys, 
Antarctica.” Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.00065. 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

73 

Sun, H. Y., Noe, J., Barber, J., Coyne, R. S. , Cassidy-Hanley, D., Clark, T. G., Findly, R. C. and 
Dickerson, H. W. 2009. Endosymbiotic Bacteria in the Parasitic Ciliate Ichthyophthirius 
multifiliis. Applied and Environmental Microbiology, Vol. 75, p. 7445-7452. 
 
Tao, Yongzhen, Deng Liu, Xing Yan, Zhihua Zhou, Jeong K. Lee, and Chen Yang. 2012. 
“Network Identification and Flux Quantification of Glucose Metabolism in Rhodobacter 
Sphaeroides under Photoheterotrophic H2-Producing Conditions.” Journal of Bacteriology 194 
(2): 274–83. https://doi.org/10.1128/JB.05624-11. 
 
Tejedor-Sanz, Sara, Patricia Fernández-Labrador, Steven Hart, Cesar I. Torres, and Abraham 
Esteve-Núñez. 2018. “Geobacter Dominates the Inner Layers of a Stratified Biofilm on a 
Fluidized Anode During Brewery Wastewater Treatment.” Frontiers in Microbiology 9 (March). 
https://doi.org/10.3389/fmicb.2018.00378. 
 
Thompson, Luke R., Jon G. Sanders, Daniel McDonald, Amnon Amir, Joshua Ladau, Kenneth J. 
Locey, Robert J. Prill, et al. 2017. “A Communal Catalogue Reveals Earth’s Multiscale 
Microbial Diversity.” Nature 551 (7681): 457–63. https://doi.org/10.1038/nature24621. 
 
Tully, B., Graham, E. & Heidelberg, J. 2018. The reconstruction of 2,631 draft metagenome-
assembled genomes from the global oceans. Sci Data 5, 170203. 
https://doi.org/10.1038/sdata.2017.203 
 
Van Rossum, Thea, Michael A. Peabody, Miguel I. Uyaguari-Diaz, Kirby I. Cronin, Michael 
Chan, Jared R. Slobodan, Matthew J. Nesbitt, et al. 2015. “Year-Long Metagenomic Study of 
River Microbiomes Across Land Use and Water Quality.” Frontiers in Microbiology 6 
(December). https://doi.org/10.3389/fmicb.2015.01405. 
 
VandeWalle, J. L., G.W. Goetz, S.M. Huse, H. G. Morrison, M.L. Sogin, R.G. Hoffmann, 
K. Yan, and S.L. McLellan. 2012. “Acinetobacter, Aeromonas, and Trichococcus Populations 
Dominate the Microbial Community within Urban Sewer Infrastructure.” Environmental 
Microbiology 14 (9): 2538–52. https://doi.org/10.1111/j.1462-2920.2012.02757.x. 
 
Vieweg, Michael, Marie J. Kurz, Nico Trauth, Jan H. Fleckenstein, Andreas Musolff, and 
Christian Schmidt. 2016. “Estimating Time-Variable Aerobic Respiration in the Streambed by 
Combining Electrical Conductivity and Dissolved Oxygen Time Series.” Journal of Geophysical 
Research: Biogeosciences 121 (8): 2199–2215. https://doi.org/10.1002/2016JG003345. 
 
Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, 
S. Glidden, et al. 2010. “Global Threats to Human Water Security and River Biodiversity.” 
Nature 467 (7315): 555–61. https://doi.org/10.1038/nature09440. 
 
Wang, Yongming, Jun Yang, Lemian Liu, and Zheng Yu. 2015. “Quantifying the Effects of 
Geographical and Environmental Factors on Distribution of Stream Bacterioplankton within 
Nature Reserves of Fujian, China.” Environmental Science and Pollution Research International 
22 (14): 11010–21. https://doi.org/10.1007/s11356-015-4308-y. 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

74 

Wang, Yu, Hua-Fang Sheng, Yan He, Jin-Ya Wu, Yun-Xia Jiang, Nora Fung-Yee Tam, and 
Hong-Wei Zhou. 2012. “Comparison of the Levels of Bacterial Diversity in Freshwater, 
Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags.” Applied and 
Environmental Microbiology 78 (23): 8264–71. https://doi.org/10.1128/AEM.01821-12. 
 
Wright, J., V. Kirchner, W. Bernard, N. Ulrich, C. McLimans, M. F. Campa, T. Hazen, et al. 
2017. “Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater 
Undergoing Natural Attenuation.” Frontiers in Microbiology 8: 2300–2300. 
https://doi.org/10.3389/fmicb.2017.02300. 
 
Zeglin, Lydia H. 2015. “Stream Microbial Diversity in Response to Environmental Changes: 
Review and Synthesis of Existing Research.” Frontiers in Microbiology 6: 454. 
https://doi.org/10.3389/fmicb.2015.00454. 
 
Zhang, Qian, Xia He, and Tao Yan. 2015. “Differential Decay of Wastewater Bacteria and 
Change of Microbial Communities in Beach Sand and Seawater Microcosms.” Environmental 
Science & Technology 49 (14): 8531–40. https://doi.org/10.1021/acs.est.5b01879. 
 
Zhou, Aijuan, Jiaguang Zhang, Kaili Wen, Zhihong Liu, Guoying Wang, Wenzong Liu, Aijie 
Wang, and Xiuping Yue. 2016. “What Could the Entire Cornstover Contribute to the 
Enhancement of Waste Activated Sludge Acidification? Performance Assessment and Microbial 
Community Analysis.” Biotechnology for Biofuels 9 (November). 
https://doi.org/10.1186/s13068-016-0659-y. 
 
Zimmermann, Rosalie E., Olivier Ribolzi, Alain Pierret, Sayaphet Rattanavong, Matthew T. 
Robinson, Paul N. Newton, Viengmon Davong, Yves Auda, Jakob Zopfi, and David A. B. 
Dance. 2018. “Rivers as Carriers and Potential Sentinels for Burkholderia Pseudomallei in 
Laos.” Scientific Reports 8 (1): 1–7. https://doi.org/10.1038/s41598-018-26684-y. 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

75 

2 CHICAGO AREA WATERWAYS SYSTEM FECAL INDICATOR BACTERIA 
MODEL DEVELOPMENT 

 
 
2.1 INTRODUCTION 
 

The main objective of this task is to explore the applicability of using a data-driven 
modeling platform for predicting fecal indicator bacteria concentrations in the CAWS. We 
explored two approaches 1) classical statistical methods and 2) the Chicago Area Waterways 
System Fecal Indicator Bacteria (CAWS-FIB) model which is designed to predict the FIB 
concentrations at any point along the CAWS using machine learning (ML, the subfield of 
computer science that allows computers to learn without being explicitly programmed) 
(Samuel, 1959). ML is suited for predicting response variables (e.g., FIBs) that require high 
dimensional/multi-feature predictor variables and commonly used in cases where patterns exist 
between response and predictor variables, but functional relationships are very difficult to pin 
down mathematically. ML algorithms including artificial neural networks (ANNs) and gradient 
boosting machine (GBM) and classical statistical approaches such as multiple linear regress with 
adaptive least absolute shrinkage and selection operator (MLR-AL) and partial least squares 
regression (PLSR) were explored and compared using water quality and other relevant data 
associated with seven sampling sites (36, 56, 57, 73, 76, 99, and 100) along the CAWS. Testing 
data for each of these sites were divided into two groups: 2013–2015 (pre-disinfection/pre-TARP 
period) and 2016–2018 (post-disinfection/TARP implementation period). This task was achieved 
through 1) data management and streamlining from multiple sources including the Metropolitan 
WRP District (MWRD) of Greater Chicago, Illinois State Water Survey (ISWS), U.S. 
Geological Survey (USGS), and NOAA - National Centers for Environmental Information 
(NCEI) and 2) implementation of each of the aforementioned ML and traditional statistical 
algorithms in Python, an open-source and widely used software package for data science and 
machine learning applications. 
 

As will be discussed, there was not enough data to train the models. However, the model 
architecture has been completed and can be used for future application if fecal coliform sampling 
frequency increases. The details of the methods, results of the model training and testing 
performance evaluation, model functionalities, and the applicability of the data-driven modeling 
platform for predicting FIB density in the CAWS will be discussed in the following sections. 
 
 
2.2 MATERIALS AND METHODS 
 
 
2.2.1 Water Quality Sampling Sites Used for Model Development 
 

Seven sites (36, 56, 57, 73, 76, 99, and 100) were used for training and testing the model 
both in the pre-disinfection/pre-TARP (2013–2015) and post-disinfection/TARP implementation 
(2016–2018) periods. These seven sites, in addition to having relatively more data, are located in 
different sections of the CAWS and represent both contact and non-contact uses (Figure 36). 
Thus, they were chosen to be used for training and testing each of the candidate models in the 
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hope of developing a robust data-driven model that can be used to predict FIB density at any 
point along the CAWS given a suite of important predictors. 
 
 

 

FIGURE 36 The water quality sampling sites where fecal coliform data were 
analyzed. Sites 36, 56, 57, 73, 76, 99, and 100 were used for model development. 
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2.2.2 The CAWS-FIB Conceptual Modeling Framework 
 

The main components of the CAWS-FIB model and their connections are shown in 
Figure 37. The first component compiles (and where applicable, transforms) a variety of relevant 
input data from multiple sources. The second component is focused on the highly iterative 
process of developing a data-driven (ML or traditional statistics-based) model that best describes 
the underlying complex mathematical relationship between FIB densities and environmental 
variables. The third component summarizes predicted FIB densities (fecal coliform in this case) 
in the water column at a specified location within the CAWS, probability of exceedance based on 
certain threshold determined by U.S. Environmental Protection Agency (USEPA) regulatory 
limit and a decision value, model performance metrics, and list of explanatory variables ranked 
in order of importance. 
 
 

 

FIGURE 37 Schematic of the CAWS-FIB modeling process. 
 
 

2.2.2.1 Data and Data Sources 
 

Data for the CAWS-FIB model include daily FIB concentrations and multiple 
environmental variables (Figure 37) from various sources including the MWRD of Greater 
Chicago, ISWS, USGS, and NOAA-NCEI. Environmental variables included three major 
categories: meteorological (e.g., solar radiation, precipitation, etc.), hydrologic and hydraulic 
(e.g., flow, stage, combined sewer overflows, etc.), and water quality (e.g., pH and 
concentrations of nutrients) data. The model can take environmental variables that come from 
frequent (hourly to daily) and one-time manual measurements. Manually-measured 
environmental variables include those that were measured (e.g., pH, dissolved oxygen 
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concentration, water temperature, etc.) at the sampling points during times when river water 
samples for FIB measurements were collected. 
 

High frequency environmental variables were summarized over 1-, 2-, 6-, 12-, 24-, 48-, 
72-, 96-, and 120-hr. time windows or lagged times, a technique used by previous studies 
(e.g., (Jones et al., 2013, Brooks et al., 2016) and shown to improve the accuracy of regression 
models in predicting FIB levels (Cyterski et al., 2012). Summary statistics over the chosen time 
windows or lagged times included min, max, mean, range, sum, and standard deviation. The 
choice of which statistics to apply for an environmental variable was based on the insights from 
related studies (e.g., Jones et al.,2013; Brooks et al., 2016) and knowledge of the CAWS 
ecosystems. For instance, combined sewer overflows (CSO), which contain about 90% 
stormwater and 10% untreated sewage, entering the CAWs is considered a major source of 
micro-pollutants. Table B.1 shows the list of the environmental variables and the corresponding 
summary statistics used at each of the sampling points (Sites 36, 56, 57, 73, 76, 99, and 100) 
over the indicated time windows. Widely used data transformation techniques including 
logarithmic and square root transformations were applied to the data as necessary. Determining 
which transformation technique is appropriate for an environmental variable was based on the 
works of Ge & Frick, (2007) and Frick et al. (2008). R and Python scripts were developed to 
download, pre-process, and summarize datasets for each site from 2013–2018. 
 
 
2.2.3 Model Development 
 
 

2.2.3.1 Overview of the Algorithms 
 

The CAWS-FIB model was developed and implemented in Python 3.7.3 using mostly the 
scikit-learn package (Pedregosa et al., 2011). Each of the algorithms being explored is described 
in the following subsections. 
 

ANNs. An artificial neural network (ANN) is a popular ML algorithm designed to mimic 
the functionality of a human neurological system. ANNs have been applied to numerous domains 
including business, health and medicine, manufacturing, and engineering (Paliwal and Kumar, 
2009). Vijayashanthar et al. (2018) summarized the multitude of works that have been done in 
the applications of ANNs to water resources and environmental engineering ranging from 
rainfall-runoff modeling/forecasting to drinking water quality. Brion and Lingireddy (2003) have 
shown that ANNs can be used for predicting peak microbial concentrations, sorting land use 
associated fecal pollution sources and relative ages of runoff, and selecting and studying 
surrogate parameters. The ANNs used in the CAWS-FIB model are multilayer-perceptron 
networks with one hidden layer consisting of 100 neurons. The stochastic gradient method is 
used to minimize the least squares function. 
 

GBM. The Gradient Boosting Machine method (GBM method (Friedman, 2001) used for 
the CAWS-FIB model belongs to the ensemble group of ML algorithms and is a variant of the 
random forests method (Breiman, 2001). GBM has been shown to perform well in predicting 
recreational water quality advisories. In a comparison of 14 regression and machine learning 
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methods, GBM was identified as the most accurate method for predicting FIBs (Brooks et al., 
2016). GBM uses decision or regression trees rather than linear equations (Friedman, 2001). 
Each decision or regression tree is composed of virtual branches and nodes and controlled by a 
set of decision rules. For instance, “if pH is greater than 7.0 go to the left branch, otherwise go 
right.” At the end of any branch is a “node,” which contains a predictive value for the response 
variable. Under GBM, each regression tree is called a weak or base-learner. The ensemble of 
base-learners are constructed sequentially to improve the performance of the model by fitting the 
subsequent regression trees to the residual error after the previous trees have all been fit 
(Cyterski et al., 2013; Natekin & Knoll, 2013). Main strengths of GBM are its robustness against 
overfitting of the training data and ability to handle non-linear relationships between the 
response and explanatory variables, but its drawback lies in its nature as being of a “black box,” 
i.e., the model is difficult to inspect graphically or pin down mathematically (Cyterski et al., 
2013). Detailed discussion of the GBM algorithm can be found in Friedman (2001), Hastie et al. 
(2001) and Natekin & Knoll (2013). During model development, the number of regression trees 
or base learners used ranged from 7000 and 10000 (consistent with similar past research 
(e.g., Jones et al., 2013; Cyterski et al., 2013)), while the model learning rate and loss function 
were set to 0.01 and ls (least squares), respectively. The final choice of the number of regression 
trees was based on the trade-off between predictive accuracy and computational time 
requirement. 
 

MLR-AL. In addition to ANNs and GBM, multiple linear regression (MLR) method was 
evaluated for its potential to model FIB concentration in the CAWS. As the most common 
method of linear analysis, MLR describes the relationship between a continuous response or 
dependent variable and two or more explanatory or independent variables. To develop an 
MLR-based model for this study, the adaptive least absolute shrinkage and selection operator 
(adaptive LASSO) (Zou, 2006) was used for selecting explanatory variables and estimating their 
coefficients. The LASSO is a regression analysis method that can simultaneously perform 
relevant variable selection and estimation of coefficients of the variable being selected 
(Tibshirani, 1996). The adaptive LASSO is an improvement of the LASSO and capable of 
correctly selecting the right explanatory variables as well as accurately estimating them due to its 
so-called “oracle properties” (Zuo, 2006). Brooks et al. (2016) showed that an MLR method with 
adaptive LASSO is one of the most accurate methods in predicting recreational water quality 
advisories and their work was the primary basis in developing an MLR-based model for 
CAWS-FIB model. 
 

PLSR. Another linear analysis method that was tested is the partial least squares 
regression (PLSR) (Hou et al., 2006; Brooks et al., 2013). As a regression technique, PLSR 
improves a major limitation of MLR using ordinary least squares, which is overfitting in the 
presence of collinear or correlated explanatory variables. It inherently takes into account the 
effect of collinearity in explanatory variable selection. Overfitting occurs when a model works 
very well in fitting with historical data, but performs poorly in predicting future values. PLSR is 
suited for constructing predictive regression model that involves many explanatory variables 
(Wold et al., 2011). An important feature of PLSR method is its use of mutually orthogonal 
components derived from the decomposition of the explanatory variables as covariates in a 
regression model. These orthogonal components are chosen in such a way that they are related to 
the response variable. Choosing how many components to include in the model is a requirement 
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in using the PLSR. The predictive residual sum of squares (PRESS) statistic was used to select 
the number of model components following Brooks et al. (2013). PLSR is one of the algorithms 
used in the VirtualBeach model version 3, a model developed by the US EPA for predicting fecal 
indicator bacteria concentration on recreational beaches (Cyterski et al., 2013). 
 
 

2.2.3.2 Model Training and Testing 
 

The first step in the model estimation was to subdivide the preprocessed 
(cleansed/transformed) data into two sets: training and testing with 85%-15% split. For each 
sampling site, the training set (85% of the entire dataset) was used for determining or learning 
the model parameters and assessing the initial model performance, while the testing set (the 
remaining 15% of the dataset not used in model training) was used to quantify a final, unbiased 
estimate of the predictive performance of the model. The training and testing sequence, being an 
iterative process, was conducted several times to get the estimate of the model’s true error rate. 
 

The main focus of the training phase is to avoid overfitting. Overfitting occurs when the 
approximated function or model can only define the relationship of the explanatory variables and 
a response variable on a particular set of data (e.g., training dataset). In other words, the model 
“memorizes” the specific relationship between the explanatory (e.g., environmental) variables 
and the response variable (fecal coliform) of the training dataset only, instead of the underlying 
general structure representing the entire environmental and fecal coliform variable space or 
distribution. As a result, the approximated function performs very well during the training phase, 
but performs poorly in the testing phase. The primary causes of overfitting are using insufficient 
and/or noisy data in training the model and having a number of model parameters that is equal to 
or greater than the number of observations. A number of measures were taken to address 
overfitting including using most of the dataset (85%) for training, utilizing the “shuffle” function 
in Python and cross-validation (CV), and feature or dimensionality reduction. The Python’s 
“shuffle” function randomizes the entire dataset so that a random set of explanatory variables and 
fecal coliform value pair is chosen at each iteration in the training phase. CV is a widely used 
technique for evaluating the predictive capability of models for data that they have not seen 
before. The usual steps in applying CV are: 1) partitioning the training dataset into k different 
subsets or folds, 2) using k-1 subsets for training k models and testing on the remaining subset, 
and 3) taking the average of each of the measured performance of the k models (Garreta and 
Moncecchi, 2013). In developing the CAWS-FIB model, a 5-fold CV was used in the model 
training phase, meaning that 4/5 subsets of the training dataset were used to develop each set of 
explanatory variable coefficients and using these coefficients to predict the remaining 1/5 subset 
of the training dataset. Lastly, feature or dimensionality reduction was conducted. As shown in 
Table B.1, there are a multitude of features or explanatory variables used in model development. 
The features derived from manually and more frequently (time-lagged) measured environmental 
variables (Table B.1) ranged from 119–198, while the number of site observations ranged from 
25–38. Thus, after the 119–182 features were ranked by relative importance based on 
preliminary model estimation, only the top 15 most relevant feature or variables were chosen in 
the final model development, resulting into a data space of 15 (columns) × 25–28 (rows) 
dimensions. Consequently, model training and testing were conducted using three trials: 1) a 
15-feature model, 2) a 10-feature model, and 3) a 5-feature model. 
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2.2.3.3 Model Prediction 
 

The model with the best overall predictive performance based on predefined metrics was 
chosen to perform prediction and other computations on a hypothetical dataset designed to 
evaluate model functionality. The hypothetical dataset covers variations of the 119–198 
features/explanatory variables used for model training and testing. For each site, these variations 
include the mean of the explanatory variables (MEV), 1.1 × MEV, 0.9 × MEV, MEV + one 
standard deviation of the MEV (MEV + SD1), 1.2 × MEV, and 0.8 × MEV. 
 
 

2.2.3.4 Model Capability and Performance Metrics 
 

In addition to predicting fecal indicator bactria density given a set of relevant features or 
environmental variables, the model is capable of estimating the probability of exceedance (POE) 
similar to the VirtualBeach model (Cyterski et al., 2013). Basically, the POE is the probability 
(%) that a predicted fecal coliform density will exceed a threshold number. The threshold 
number is a function of the regulatory limit (RL) and a decision value (DV). A DV is basically 
used as the basis for determining whether or not to issue a water quality advisory on a portion of 
the CAWS used for contact recreation. While RL is fixed as set by law or proclamation, DVs can 
be set lower, higher, or equal to the RL depending on which value will optimize model 
performance (i.e., balancing between sensitivity, specificity, and/or overall accuracy, which are 
defined below) based on the plot of model fits vs. actual observations. In these model tests, the 
CAWS limit for fecal coliform of 200 CFU/100 mL was used as the RL and DV, respectively. 
 

Model performance metrics include coefficient of determination (R2), mean squared error 
(MSE), root MSE (RMSE), specificity, sensitivity, and accuracy. Accuracy, sensitivity, and 
specificity are computed as (true positives + true negatives)/number of total observations, true 
positives/(true positives + false negatives), and true negatives/(true negatives + false positives), 
respectively. Predicted fecal coliform values are categorized as false positives (FP), true 
positives (TP), false negatives (FN), and true negatives based on the quadrant they fall into in the 
observed vs. predicted scatter plot (Figure 38). The choice of DV is arbitrary and the final choice 
should be based on optimizing balance between sensitivity and specificity. Higher sensitivity 
means that people are rarely exposed to high fecal coliform concentrations, while high specificity 
corresponds to minimizing the chances of putting up a water quality advisory when the actual 
fecal coliform density is below the threshold. Values of R2 close to 1 (normal range is between 
0 and 1), lower values of MSE and RMSE, particularly close to 0, and higher values of accuracy, 
especially close to 1 are indicative of an accurate predictive model. 
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FIGURE 38 A sample a scatter plot of observed and predicted fecal values during model training 
and testing showing false positives (FP), true positives (TP), true negatives (TN), and false negatives 
(FN). 
 
 
2.3 RESULTS AND DISCUSSION 
 
 
2.3.1 Model Training and Testing 
 

In general, a 15-feature model showed relatively better model performance across the 
four algorithms (ANNs, GBM, MLR-AL, and PLSR) being tested. Thus, for the purpose of 
brevity, only the performance metrics of a 15-feature model for each of the four algorithms are 
summarized and only R2, RMSE, and accuracy, three of the most important metrics of accurate 
model training and testing performance, are shown. The values of the R2, RMSE, and accuracy 
for each of a 15-feature model averaged over the seven water quality sampling sites used for 
model testing are shown in Tables 17, 18, and 19, respectively. The values of R2, RMSE, and 
accuracy for each of a 15-feature model by site are shown in Tables B.2, B.3, and B.4, 
respectively. The performance metrics shown represent both the model training and testing 
phases in both the pre-disinfection/pre-TARP implementation (2013–2015) and post-
disinfection/TARP implementation (2016–2018) periods. 
 

Both the ML-based and traditional statistics-based models showed better R2 values in the 
training phase compared to the testing phase, regardless of whether it is during the pre-
disinfection period/pre-TARP implementation period (2013–2015) or the post-
disinfection/TARP-implementation period (2016–2018) (Table 2-1). In the training phase, 
ML-based models consistently outperformed traditional statistics-based models with GBM-based 
model consistently showing an R2 = 1.00. However, in the testing phase none of the models 
showed acceptable R2 values. All the R2 values are outside of the normal (0–1.0) range. These 
results indicate overfitting, because the models performed very well using historical or training 
data, but performed poorly in the testing phase. 
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TABLE 17 Mean values of the coefficient of determination (R2) 
during testing and training phases based on a 15-feature model 
conducted over seven water quality sampling sites grouped by periods 
(2013–2015 and 2016–2018). Values inside the parentheses are 
standard deviation. (R2) values close to 1.0 are indicative of accurate 
models. 

 
 

2013–2015 
 

2016–2018 
 

Model Training Testing 
 

Training Testing 
      
ANNs 0.97 (0.02) -61.33 (97.95)  0.96 (0.06) -0.56 (1.36) 
GBM 1.00 (0.00) -1.21 (2.86)  1.00 (0.00) -0.40 (1.66)  
MLR-AL 0.52 (0.21) 6.93 (16.88)  0.68 (0.14) -0.05 (0.49) 
PLSR 0.76 (0.24) -87.11 (186.75)  0.86 (0.15) -487.88 (1130.09) 

 
 

The RMSE values showed that models with ANNs and MLR-AL algorithms 
outperformed models with either the GBM and PLSR algorithm (Table 10). In the both the 
training and testing phases, models with ANNs and MLR-AL algorithms have average RMSE 
values of 1.08 or lower. The model with GBM algorithm performed well in the training phase 
with an average RMSE = 0.00, a value that is very rarely achieved in practice, but jumped to 
approximately 30000 and 37000 in the testing phase on the 2013–2015 and 2016–2018 datasets, 
respectively. The model with PLSR algorithm performed the worst with average RMSE values 
higher than 12000 in both the training and testing phases. 
 

Like the R2 and RMSE values, the mean values of accuracy (Table 11), a measure of the 
model’s ability to classify whether a predicted value is above (true positive) or below (true 
negative) the regulatory standard and decision value (DV), consistently showed better model 
performance in training than in testing phase. With the exception of PLSR results for the  
2016–2018 dataset, the difference in the average accuracy between model training and testing 
ranged from 0.09 (PLSR-based model on 2013–2015 dataset) to 0.49 (ANNs-based model on 
2013–2015 dataset). 
 
 

TABLE 18 Mean values of the root-mean-square error (RMSE) during testing and training 
phases based on a 15-feature model conducted over seven water quality sampling sites 
grouped by periods (2013–2015 and 2016–2018). Values inside the parentheses are standard 
deviation. RMSE values close to 0 are indicative of accurate predictive models. 

 
 

2013–2015 
 

2016–2018 
 

Model Training Testing 
 

Training Testing 
      
ANNs 0.28 (0.11) 9.47 (10.99)  0.18 (0.15) 1.08 (0.36) 
GBM 0.00 (0.00) 29898.54 (65876.54)  0.00 (0.00) 36669.22 (88449.57) 
MLR-AL 1.06 (0.17) 2.07 (0.81)  0.61 (0.21) 1.04 (0.50) 
PLSR 13238.49 (15058.66) 44215.42 (64834.57)  124143.91 (326154) 83127.89 (214468) 
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TABLE 19 Mean values of the accuracy performance metric 
during testing and training phases based on a 15-feature 
model conducted over seven water quality sampling sites 
grouped by periods (2013–2015 and 2016–2018). Values 
inside the parentheses are standard deviation. Accuracy = 
(true positives + true negatives)/number of total observations. 
Accuracy values close to 1 are indicative of accurate 
classification models. 

 
 

2013–2015 
 

2016–2018 
 

Model Training Testing 
 

Training Testing 
      
ANNs 0.95 (0.05) 0.46 (0.23)  0.93 (0.06) 0.73 (0.13) 
GBM 1.00 (0.00) 0.79 (0.12)  0.94 (0.15) 0.83 (0.24) 
MLR-AL 0.84 (0.10) 0.59 (0.14)  0.85 (0.08) 0.66 (0.23) 
PLSR 0.68 (0.10) 0.59 (0.20)  0.76 (0.17) 0.77 (0.19) 

 
 

Sample plots showing long lists of explanatory variables for fecal coliform ranked from 
the most to the least important is shown in Figure B.1. This is one of the outputs in the initial 
step of model development. Due to the small size of the dataset, it was found that using varying 
random configurations of the testing and training sets produced large differences in the variable 
importance due to the large amount of variables compared to the total number of data points per 
variable. Therefore, reduction of the dimensionality of the feature space before using each of the 
four models to find variable importance was necessary. Initially, each model was run 30 times 
over the 30 differing random configurations of the test and training data use and the median of 
the variable importance was used to determine the most relevant explanatory features 
(Figure B.1). The final model development was then conducted by running each model on the 
15, 10, and 5 most relevant explanatory variables for each site. Figures 39, 40, 41, and 42 show 
the top 15 most relevant explanatory variables for ANNs, GBM, MLR-AL, and PLSR-based 
models, respectively, based on all the seven water quality sites using for model development in 
both the 2013–2015 and 2016–2018 datasets. The top 15 most explanatory variables across the 
seven sites are dominated by more frequently measured or time-lagged/transformed 
environmental (solar radiation, rainfall, air temperature, dissolved oxygen, water temperature, 
and specific conductance) and hydraulic (stage and discharge) variables and CSOs. However, 
manually-measured parameters (whose data were collected at the same time as the fecal coliform 
samples) including NO3, water temperature (TwMan), dissolved oxygen (DOMan), and pH have 
also shown to be important as they were at the top three of the list in more than three instances, 
most notably using the GBM algorithm (Figure 40). 
 

There is the potential for key explanatory variables to vary between sites due to site 
specific differences in local hydrology geography, and surrounding land use. Overall, however, 
the most important explanatory variables for individual sites were generally inconsistent by 
model method and between the two time periods, indicating there was insufficient data for the 
model to identify key environmental factors at local scales. 
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FIGURE 39 The 15 most important explanatory variables for all the seven sites using the ANNs-based model. Abbreviations for model explanatory variables can be found in 
Table B.1. Explanatory variables, in general, are named by an abbreviation for the environmental variable, followed by the transformation used (if any, i.e., mean and standard 
deviation (SD)), and the time-lag (1–120 hours). For instance, standard deviation of solar radiation for the last 96 hours and mean of specific conductance for the last 120 hours 
are symbolized as RnSD96 and SpCondMean120, respectively. The only exception are the Log-transformed variables such as discharge (Q) where the name starts with “L” for 
logarithmic transformation and the logarithm base (10) is included. For example, the maximum value of the logarithm to the base 10 of Q for the last 24 hours is named as 
LQ10Max24. 
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FIGURE 40 The 15 most important explanatory variables for all the seven sites using GBM-based model. Abbreviations for model explanatory variables can be found in 
Table B.1 Explanatory variables, in general, are named by an abbreviation for the environmental variable, followed by the transformation used (if any, i.e., mean and standard 
deviation (SD)), and the time-lag (1-120 hours). For instance, standard deviation of solar radiation for the last 96 hours and mean of specific conductance for the last 120 hours 
are symbolized as RnSD96 and SpCondMean120, respectively. The only exception are the Log-transformed variables such as discharge (Q) where the name starts with “L” for 
logarithmic transformation and the logarithm base (10) is included. For example, the maximum value of the logarithm to the base 10 of Q for the last 24 hours is named as 
LQ10Max24. 
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FIGURE 41 The 15 most important explanatory variables for the seven sites using MLR-AL-based model. Abbreviations for model explanatory variables can be found in Table B.1. Explanatory 
variables, in general, are named by an abbreviation for the environmental variable, followed by the transformation used (if any, i.e., mean and standard deviation (SD)), and the time-lag 
(1–120 hours). For instance, standard deviation of solar radiation for the last 96 hours and mean of specific conductance for the last 120 hours are symbolized as RnSD96 and SpCondMean120, 
respectively. The only exception are the Log-transformed variables such as discharge (Q) where the name starts with “L” for logarithmic transformation and the logarithm base (10) is included. 
For example, the maximum value of the logarithm to the base 10 of Q for the last 24 hours is named as LQ10Max24. 
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FIGURE 42 The 15 most important explanatory variables for the seven sites using PLSR-based model. Abbreviations for model explanatory variables can be found in Table B.1. Explanatory 
variables, in general, are named by an abbreviation for the environmental variable, followed by the transformation used (if any, i.e., mean and standard deviation (SD)), and the time-lag 
(1–120 hours). For instance, standard deviation of solar radiation for the last 96 hours and mean of specific conductance for the last 120 hours are symbolized as RnSD96 and SpCondMean120, 
respectively. The only exception are the Log-transformed variables such as discharge (Q) where the name starts with “L” for logarithmic transformation and the logarithm base (10) is 
included. For example, the maximum value of the logarithm to the base 10 of Q for the last 24 hours is named as LQ10Max24. 
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2.3.2 Model Prediction 
 

Table 20 shows the predicted fecal coliform concentrations using the hypothetically 
generated dataset and probability of exceedance (POE) values based on the RL and DV of 
200 CFUs/100 mL for site 76. Predicted fecal coliform concentrations results for the sites 36, 56, 
57, 73, 99, and 100 can be found in Tables B.5, B.6, B.7, B.8, B.9, and B.10, respectively. 
 

Table 20 depicted the general picture of the predicted fecal coliform density values for 
each of the four models. Results of model tests using seven sites showed that models with GBM 
and PLSR algorithms consistently overpredicts fecal coliform density values, and in many 
instances produced very large values shown as “inf” in the table, which stands for infinity. This 
observation is true regardless of the input or predictors used (e.g., MEV, 1.1 × MEV, 
0.9 × MEV). Conversely, an MLR-AL-based model tends to predict low fecal coliofrm density 
values relative to the predictions of the other three models. The ANN algorithm is the only 
model that produces values that are, with a few exceptions, reasonably within the range of the 
fecal coliofrm density values used for training and testing. The ANN algorithm was relatively 
robust in predicting the fecal coliform density in the CAWS despite of the limited sampling data 
available for model training and testing. 
 

The probability of exceedance (POE) assignment to fecal coliform value that is higher 
than both the regulatory standard and DV values is consistently close or equal to 100% across all 
the four models (Table 20 and Tables B.5–B.10), especially for relatively large fecal coliform 
values. Conversely, the POE assignment for predicted fecal coliform values lower than the 
regulatory standard and DV values seem to be inconsistent, particularly for the classical 
statistical approaches. The expectation is that POE should be 0 or close to 0 when the predicted 
fecal coliform value is 0 or close to 0. However, a predicted value of less than 1 CFU/100 mL 
from an MLR-AL-based was assigned a POE of approximately 47% (Table B.7). In the same 
manner, a predicted fecal coliform of 0 CFU/100 mL from site 99 was assigned a POE of 
approximately 49% (Table B.9). This inconsistency in the POE assignment could be primarily 
attributed to the inability of models based on traditional statistical methods to properly handle 
interdependent or non-orthogonal features. This limitation is one of the primary areas of 
continuous improvement for future CAWS-FIB model development. Another limitation is that 
the data used for model training and testing has very limited volume (26–38 data points) with a 
very large number of features (119–182) and very large dynamic value range. It has to be noted 
though that these predictions are based on a hypothetical dataset whose primary purpose is to 
showcase the basic model functionalities, not the absolute values of the predictions, and may not 
completely represent the distribution of the dataset from which the models were trained and 
tested. The only way to evaluate the accuracy of the absolute predicted values and their 
associated POE values is to fix the model limitation for classical statistical methods and use 
actual/measured data for prediction accuracy evaluation purposes only; i.e., measured data that 
have not be used for either model training and/or testing phase(s). 
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2.4 CONCLUSIONS AND RECOMMENDATIONS 
 

Model training and testing indicated that overfitting was a problem for the CAWS-FIB 
models. Regardless of algorithm used (ML or classical statistics-based) the models performed 
well when predicting fecal coliform density during training, but performed poorly during testing. 
The overfitting is likely related to the low, monthly, sampling frequency for fecal coliform which 
limits the amount of data available for model training and testing. Overfitting occurred despite 
the implementation of all the widely used techniques for addressing overfitting from the training 
and testing dataset management perspective such as randomization of the dataset using Python’s 
“shuffle” function and cross-validation. Under the current water quality sampling scheme of 
collecting 1–3 grab samples per month from March to November, quantifying/simulating the 
CAWS’ microbial water quality may be best conducted using processed based models as they do 
not require larger volume of data as their data-driven model counterparts for 
calibration/validation. 
 

The modeling approaches employed in this study fell short of consistently demonstrating 
acceptable predictive capabilities. However, in addition to producing an operational model with 
multiple functionalities, the overall model development effort provided information that would 
be critical for the success of future ML model development. For example, it provided a short list 
of the most relevant explanatory variables (including the associated transformations and lagged 
times) and highlighted the potential of the ANNs as the future algorithm of choice for the 
CAWS-FIB model as it outperformed the other three algorithms across most of the performance 
metrics. The key explanatory variables were dominated by environmental (solar radiation, 
rainfall, air temperature, dissolved oxygen, water temperature, and specific conductance) and 
hydraulic (stage and discharge) variables although NO3, water temperature (TwMan), dissolved 
oxygen (DOMan), and pH were also in the top three most important explanatory variables in 
more than three algorithms. 
 

Improving the current CAWS-FIB model should start with collecting fecal coliform 
samples more frequently. The general rule-of-thumb for ML-based model development is for the 
number of observations (data points) per feature or explanatory variable be, at minimum, 
30 times the number of features. This means that for a 15-feature model, a total of 450 measured 
FIB density samples per site per year must be collected, which translates to 50 data points per 
water quality sampling site per month from March to October. However, this level of sampling 
intensity is not likely to be realistic. 
 

Increasing sampling frequency would also incorporate more FIB samples collected 
during periods of rainfall and CSO (gravity or pumped) discharges. CSOs are one of the most 
important factors controlling the FIB concentrations, yet under the current dataset CSO-related 
features or explanatory variables (either as intensity or magnitude) are dominated by 0 values 
when summarized hourly for the last 120 hours prior to the FIB density sampling time. This 
indicates that most water quality samples from which the FIB density data were analyzed were 
oftentimes collected 120 hours after CSO discharges had already occurred, although it should be 
noted that 2017–2019 post CSO samples were collected within 12 hours of CSO events. Moving 
forward, the sampling scheme should incorporate event-based sampling into the current sampling 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

92 

scheme, and the former must be conducted, if at all possible, within 24–120 hours after the CSO 
discharges have occurred. 
 

In addition, the CAWS-FIB model should be “re-trained” and “re-tested” on an annual-
basis, i.e., the model to be used for the current year should be trained and tested using data from 
the year before, thereby taking into account important, incremental changes in the system such as 
land use/land cover and structural changes in the hydraulic system (e.g.,TARP). This suggested 
re-training and re-testing scheme is an improvement of the current model, which assumed that 
the CAWS’ LULC, hydraulic structures, etc. remained exactly the same in each of the two three-
year periods (2013–2015 and 2016–2018). 
 

On the model architecture side, the inability of the model to avoid selecting features that 
are interdependent or non-orthogonal affected the accuracy of the POE values, especially for the 
traditional statistical models. Additionally, once the dimensionality reduction process is 
completed, the final selection of features must be iterative, instead of a fixed selection of 5-, 10-, 
and 15-feature models. In other words, once the number of important features is reduced from 
say 119 to 20, then the iterative elimination process used to identify the ≤20 most relevant 
features to be used for the final model training and testing will commence. The first elimination 
process starts with 19 variables, leaving one different factor out of the set each time an iteration 
is performed. After all the iterations are completed, the 19-feature set with the best performance 
metric values will be used to proceed to the 18-variable iteration step. The process is repeated 
until such time when the performance of the (n-1) feature model becomes inferior relative to the 
n-feature model. For instance, when a 12-feature model registers an R2 = 0.8, while a previously 
evaluated 13-feature registered an R2 = 0.86, then the iteration stops, and the identified 13-most 
relevant features will be used for the final model development. 
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1. The first step of the genomic DNA (gDNA) isolation/extraction is to add sample material to 

the desired wells of the 96-well PowerBead® DNA Plate(s), Garnet. 

2. Remove nuclease and nucleotide contamination from work surfaces and instruments prior to 
starting using an appropriate solution, such as RNase AWAY™ (Thermo Scientific™ 
catalogue: 700511), followed by wiping with 70% to 100% molecular biology grade ethanol 
to remove additional contaminants. This is the way that all surface and instrument, other than 
the KingFisher™ Flex (follow manufacturer documentation), cleaning steps are carried out 
for EMP KingFisher™ HTP gDNA extractions by the Knight Lab at University of California 
San Diego. 

3. Remove the PowerBead® DNA Plate (Bead Plate) from the QIAGEN® MagAttract® 
PowerSoil® DNA KF Kit (384), and centrifuge for 1 minute at 2500 × g to pellet the garnet 
beads prior to sample addition. 

4. Remove the Square Well Mat from the Bead Plate and set aside in a sterile location. The 
Square Well Mat will be put back on to the Bead Plate after the samples have been added. 

5. Add samples to Bead Plate: 

a. Sediment Material: 0.1 to 0.25 grams per well 

b. Liquid Material: 250 µl or less per well 

6. Clean all work surfaces and instruments with RNase AWAY™ reagent (Thermo Scientific™ 
catalogue: 700511), wipe dry, and repeat with 70%-100% ethanol, wipe dry. Turn on a water 
bath to 65°C. 

7. In a sterile reservoir, add 400 μl RNase A Solution to 75 ml of PowerBead® Solution (Bead 
Solution) for every 96-well plate that will be processed. 

a. 400 µl RNase A Solution (25 mg/ml) 

b. 75 ml PowerBead® Solution 

c. PowerBead® Solution contains guanidinium thiocyanate (CAS: 593-84-0, less than 
10% w/w); handle this reagent with care, and dispose of as hazardous chemical waste 
in accordance with all institutional and local regulations. 

d. RNase A Solution is also a hazardous chemical mixture (ribonuclease, CAS: 9001-99-
4, less than 10% w/w), and should be disposed of properly. 

e. RNase A Solution is stable for approximately 1 year at room temperature, 25°C. For 
longer storage, it is recommended that you store the RNase A Solution at 2°–8°C. The 
Knight Lab at UC San Diego currently uses this solution at room temperature. 
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8. Add 750 μl of Bead Solution/RNase A Solution to each well of the Bead Plate(s). 750 µl 
Bead Solution/RNase A Solution 

9. Check the bottle(s) of SL Solution, Lysis buffer. If precipitate is visible, heat at 60°C until 
dissolved. 

a. SL Solution contains SDS (CAS: 151-21-3, less than 10% concentration w/w), which 
can precipitate if cold. Heating at 60°C will dissolve the SDS; SL Solution can be used 
while still warm. 

b. 60°C Water Bath 

10. Add 60 μl of SL Solution to each well. Secure the Square Well Mat (retained during sample 
addition to Bead Plate) tightly to the plate. 

11. 60 µl SL Solution 

12. Ensure that there is a complete seal of every well in order to prevent sample cross-
contamination and/or loss. It is often necessary to use both gloved hands and a plate-sealing 
roller. 

13. Place sealed Bead Plate(s) in 65°C water bath for 10 minutes. DO NOT SUBMERGE THE 
PLATE(S). 

a. 65°C Water Bath 

b. 00:10:00 Water Bath 

c. During incubation, or prior to starting, fill an ice container that is large enough to 
accommodate the Bead Plate(s) with enough ice to surround the Bead Plate(s). 

14. Remove excess water from the Bead Plate(s), and make sure that all wells are still fully 
sealed. Place the Bead Plate(s) between two Adapter Plates (QIAGEN® catalogue: 11990) 
and securely fasten to a 96-well Plate Shaker (such as, QIAGEN® TissueLyser® II; 
QIAGEN® catalogue: 85300). Most Plate Shakers are designed to process two plates at once. 
If this is the case, it is important to balance the Plate Shaker. If working with two Bead 
Plates, simply attach each Bead Plate to a station on the Plate Shaker. If you only have one 
Bead Plate to affix to the Plate Shaker, attach the sample-containing Bead Plate to one 
station, and a spare/empty PowerBead® DNA Plate to the second station as a balance. 

15. Shake at speed 20 Hz for 20 minutes. It is important to make sure that the Adapter Plates, 
holding the Bead Plates, are properly situated in the Plate Shaker and tightly fastened. No 
parts should rub against the Plate Shaker during operation if attached properly. 

16. Centrifuge Bead Plate(s) at room temperature for 6 minutes at 3220 × g (or 4500 × g 
depending on centrifuge). While centrifuging, or during Bead Plate shaking, add 450 μl IR 
Solution (Inhibitor Removal Technology® Solution) to each well of a clean/empty 
Collection Plate (1 ml) (provided in kit), and cover with clear Sealing Tape (provided in kit). 

a. 00:06:00 Centrifugation 

b. 450 µl IR Solution to clean Collection Plate 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

A-3 

17. Sufficiently clean the work surface and a multichannel pipette that is capable of transferring 
volumes up to 1000 μl. The tips used with the multichannel pipette must be able to fit in the 
round wells of the Collection Plate. The Knight Lab uses Rainin™ tips (catalogue: 
RT-1000F). 

18. Remove the lysate-containing Bead Plate(s) from the centrifuge, and carefully remove and 
discard the Square Well Mat. If working with more than one Bead Plate, only uncover and 
work with one at a time. 

19. Remove the Sealing Tape from the IR Solution-containing Collection Plate. 

a. Transfer 640 μl, or less, lysate from each well of the Bead Plate to the Collection 
Plate, and mix gently by pipetting up and down 4 times. 

b. 640 µl Bead Plate lysate to IR-Collection Plate 

c. The transferred lysate may contain some particulate matter. 

20. Apply a new Sealing Tape to the lysate/IR-containing Collection Plate (repeat process if 
working with a second Bead Plate). 

a. Incubate Collection Plate(s) at 4°C for 10 minutes. 

b. 4°C Incubation 

c. 00:10:00 Incubation 

21. Centrifuge lysate/IR Collection Plate(s) at 3220 × g for 6 minutes. 

22. Remove Sealing Tape from lysate/IR Collection Plate(s). 

23. Transfer entire volume of supernatant (~ 850 μl), avoiding pellet, to a new/sterile 1 ml 
Collection Plate (Collection Plate #2). Discard the used Collection Plate(s). Some pellet 
material will likely be transferred to the new Collection Plate(s) #2. 

a. 850 µl supernatant 

24. Apply new Sealing Tape to Collection Plate(s) #2, and centrifuge at 3220 × g for 6 minutes. 

25. Remove the Sealing Tape from Collection Plate(s) #2, and transfer 450 μl of supernatant to a 
clean KingFisher™ Deep Well 96 Plate. Transfer the remaining supernatant, 400 μl, to a 
second KingFisher™ Deep Well 96 Plate. Discard Collection Plate(s) #2. 

a. 450 µl supernatant 

b. 400 µl remaining supernatant 

c. This is an appropriate place to stop. If stopping, seal the KingFisher™ Deep Well 96 
Plates with plate sealing foil, not Sealing Tape from kit, and store at 4°C overnight. 
Do not store longer than 1 day. 

d. ClearMag® Reagent Aliquoting 
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26. For each 96 well plate processed, aliquot 500 μl ClearMag® Wash Solution to each well of 3 
clean KingFisher™ Deep Well 96 Plates, and 100 μl Solution EB, Elution buffer, to each 
well of 1 clean KingFisher™ 96 KF Microtiter (200 μl) Plate. 

a. 500 µl ClearMag® Wash Solution 

b. 100 µl Solution EB, Elution buffer 

c. 65 μl Solution EB is used for low biomass sample types. 

27. For each 96 well plate processed, suspend 2 ml ClearMag® Zorb Reagent in 45 ml of 
ClearMag® Binding Solution in a clean reservoir. Pipette up and down thoroughly to evenly 
disperse the magnetic beads in solution. 

a. 2 ml ClearMag® Zorb Reagent 

b. 45 ml ClearMag® Binding Solution 

c. The beads will settle quickly, mix thoroughly right before addition to sample. 

28. For each 96 well plate processed, add 47 ml of ClearMag® Binding Solution to a separate, 
clean, reservoir. 

a. 47 ml ClearMag® Binding Solution 

29. Add 470 μl ClearMag® Zorb Reagent/ClearMag® Binding Solution to each well of one 
sample lysate containing KingFisher™ Deep Well 96 Plate. 

a. 470 µl ClearMag® Zorb Reagent/ClearMag® Binding Solution 

30. To the remaining KingFisher™ Deep Well 96 Plate(s) containing lysate, add 470 μl 
ClearMag® Binding Solution to each well. 

a. 470 µl ClearMag® Binding Solution 

31. Initiate the 'KF_Flex_MoBio_PowerMag_Soil_DNA' program on the KingFisher™ Flex™ 
robot. Ensure that the protocol is set to utilize both sample lysate aliquots. Depending on the 
version of BindIt™ Software operating on the KingFisher™ Flex™ Purification System, the 
“KF_Flex_MoBio_PowerMag_Soil_DNA” script may need to be downloaded and 
transferred to the KingFisher™ Flex™ machine. Currently, the robotic script for the 
MagAttract® PowerSoil® DNA KF Kit can be found by visiting the following site, opening 
the SDS/Protocols tab, and selecting the “KingFisher Flex” option under the “Robotic 
Scripts” header: https://mobio.com/products/dna-isolation/soil/powermag-soil-dna-isolation-
kit.html. If using two aliquots of the sample lysate for purification, as in this EMP protocol, 
add an additional sample binding step after the first (before the first wash step) in the 
BindIt™ Software, and transfer the modified protocol to the robotic platform. 

32. Follow the onscreen prompts to properly load the KingFisher™ Flex™. The loading order 
should be: the tip comb, elution plate, ClearMag® Wash Solution filled plates, lysate with 
ClearMag® Binding Solution plate (Bind 2), and lysate containing ClearMag® Binding 
Solution/ClearMag® Zorb Reagent plate (Bind1). Running the KingFisher™ Flex™ 
Purification System. 
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33. The selected KingFisher™ Flex™ program will execute itself once the final plate is added 
and “Start” is pressed. The program takes approximately 65 minutes to complete, and 
requires no user intervention. 

34. When the KingFisher™ Flex™ program finishes, remove the gDNA containing elution plate, 
and seal this with an appropriate storage seal (not Sealing Tape from kit). 

35. Follow the onscreen prompts to cycle through each station on the KingFisher™ Flex™ deck. 
Dispose of all liquids from plates as hazardous chemical waste (the gDNA elution plate 
should already be removed and appropriately sealed), and discard the emptied plates. The 
gDNA is now ready for downstream applications. 

 
 

 
 
1. Amplify samples in triplicate, meaning each sample will be amplified in 3 replicate 25-µL 

PCR reactions. 

2. Pool triplicate PCR reactions for each sample into a single volume (75 µL). Do not combine 
amplicons from different samples at this point. 

3. Run amplicons from each sample on an agarose gel. Expected band size for 515F–806R is 
~300–350 bp. Low-biomass samples may yield faint or no visible bands; alternative methods 
such as a Bioanalyzer could be used to verify presence of PCR product. 

4. Quantify amplicons with Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher/Invitrogen 
cat. no. P11496; follow manufacturer’s instructions). 

5. Combine an equal amount of amplicon from each sample (240 ng) into a single, sterile tube. 
Higher amounts can be used if the final pool will be gel-isolated or when working with low-
biomass samples. Note: When working with multiple plates of samples, it is typical to 
produce a single tube of amplicons for each plate of samples. 

6. Clean amplicon pool using MoBio UltraClean PCR Clean-Up Kit (cat. no. 12500; follow 
manufacturer’s instructions). If working with more than 96 samples, the pool may need to be 
split evenly for cleaning and then recombined. Optional: If spurious bands were present on 
gel (in step 3), one-half of the final pool can be run on a gel and then gel extracted to select 
only the target bands. 

7. Measure concentration and A260/A280 ratio of final pool that has been cleaned. For best 
results the A260/A280 ratio should be between 1.8–2.0. 

8. Send an aliquot for sequencing along with sequencing primers listed below. 
 

16S sequencing primers 
Read 1 sequencing primer 
 
Field descriptions (space-delimited): 
 
    Forward primer pad 
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    Forward primer linker 
    Forward primer 
 
TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 
Read 2 sequencing primer 
 
Field descriptions (space-delimited): 
 
    Reverse primer pad 
    Reverse primer linker 
    Reverse primer 
 
AGTCAGCCAG CC GGACTACNVGGGTWTCTAAT 
Index sequencing primer 
 
AATGATACGGCGACCACCGAGATCTACACGCT 
 
Note: The 5′ adapter sequence/index sequencing primer has an extra GCT at its 3′ end 
compared to Illumina’s usual index primer sequences. These bases were added to the 3′ end 
of the Illumina 5′ adapter sequence to increase the Tm for read 1 during sequencing. 
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TABLE B.1 Variables and the corresponding summary statistics used in predicting FIB at 
each sampling point. Variables recorded at an hourly (or more frequent) time intervals are 
summarized over nine time windows or lag times. 

 
Variable and 

Statistics Description and Units 
Time Windows/lags (hrs) 

1        2       6       12       24       48       72       96       120 
   

Rn 

Mean 
Std. Dev. 

Net solar radiation, MJ m-2 hr-1 
                                                             
                                                    

 

Ta 

Mean 
Std. Dev. 

Air temperature, °C  
                                                             
                                                                

 

Tw 

Mean 
Std. Dev. 

Water temperature, °C  
                                                             
                                                                   

 

Rsqr 
Sum 

Square root of rainfall measured 
in mm                                                              

 

Q 
Difference 

Discharge, m3 s-1  
                 

  

log10Q 
Mean 
Min 
Max 

Logarithm of discharge 
measured in m3 s-1 

 
                                                             
                                                             
                                        

 

H 
Mean 
Difference 

Stage, m  
                                                             
                                     

 

CSO_int 
Mean 
Difference 

Intensity of the combined sewer 
overflows (CSOs), gph  

 
                                                             
                                  

 

log10 CSO_int 
Mean 
Min 
Max 

Logarithm of the intensity of 
CSOs measured in gph 

 
                                                             
                                                             
                                        

 

CSO_mag 
Sum 
Mean 
Std. Dev. 

Magnitude of CSO, gal  
                                                             
                                                             
                                                                

 

log10 CSO_mag 
Mean 
Min 
Max 

Logarithm of the magnitude of 
CSO measured in gal 

 
                                                             
                                                             
                                        

 

log10 Turb Logarithm of turbidity, NTU Manual 
log10 SS Logarithm of suspended solids 

measured in mg L-1 
Manual 

pH potential of Hydrogen Manual 
TOC Total organic carbon, mg L-1  
DO Dissolved oxygen, mg L-1  
TDS Total dissolved solids, mg L-1 Manual 
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TABLE B.1  (Cont.) 

 
Variable and 

Statistics Description and Units 
Time Windows/lags (hrs) 

1        2       6       12       24       48       72       96       120 
   

TP Total phosphorus, mg L-1 Manual 
TKN Total Kjeldahl Nitrogen, mg L-1 Manual 
Chl Chlorophyll, µg L-1 Manual 
Cl Chlorine, mg L-1 Manual 
NO3 Nitrate+Nitrite nitrogen, mg L-1 Manual 

 
 

TABLE B.2 Values of the coefficient of determination (R2) for 
each of the seven water quality sampling sites during training 
and testing phases based on a 15-feature model. Numbers inside 
the parentheses represent R2 values for the testing phase. 

 
 

Coefficient of Determination (R2) 
 
2013–2015 ANNa GBMb MLR-ALc PLSRd 

 
Site36 0.95(-277.90) 1.00(-0.24) 0.66(-1.23) 0.88(-1.62) 
Site56 0.99(-2.03) 1.00(-1.10) 0.33(0.00) 0.71(-58.02) 
Site57 0.97(-32.07) 1.00(-7.57) 0.24(-1.00) 0.37(-4.06) 
Site73 0.97(-28.39) 1.00(-0.46) 0.52(0.11) 0.95(-11.19) 
Site76 0.97(-14.70) 1.00(-0.97) 0.41(-1.14) 0.52(-508.07) 
Site99 1.00(-67.52) 1.00(0.70) 0.79(-0.06) 0.96(0.41) 
Site100 0.94(-6.67) 1.00(0.20) 0.72(-45.18) 0.94(-27.23) 

2016–2018         
Site36 0.99(-0.07) 1.00(-1.59) 0.78(0.10) 1.00(0.00) 
Site56 0.98(-3.33) 1.00(0.30) 0.59(0.02) 0.78(-19.70) 
Site57 0.83(0.34) 1.00(0.59) 0.55(0.60) 0.85(-3033.06) 
Site73 1.00(-0.65) 1.00(-3.62) 0.90(-3.62) 1.00(-2.87) 
Site76 0.98(0.30) 1.00(0.80) 0.51(-0.11) 0.93(-0.68) 
Site99 0.99(0.61) 1.00(-0.25) 0.74(-0.92) 0.88(-359.05) 
Site100 0.97(-1.11) 1.00(0.95) 0.70(0.30) 0.57(0.21) 
 
a ANN = Artificial Neural Network; 

b GBM = Gradient Boosting Machine; 

c MLR-AL = Multiple Linear Regression with adaptive LASSO; 

d PLSR = Partial Least Squares Regression. 
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TABLE B.3 Values of the root-mean-square error (RMSE) for each of 
the seven water quality sampling sites during training and testing 
phases based on a 15-feature model. Numbers inside the parentheses 
represent RMSE values for the testing phase. 

 
 

Root-mean-square Error (RMSE) 
 
2013–2015 ANNa GBMb MLR-ALc PLSRd 
     
Site36 0.35(31.03) 0.00(7784.00) 0.86(2.90) 2489.57(13095.47) 
Site56 0.15(1.29) 0.00(778.96) 0.96(0.88) 624.81(735.60) 
Site57 0.25(7.54) 0.00(6636.93) 1.26(1.62) 3007.99(5408.22) 
Site73 0.31(2.04) 0.00(1504.63) 1.10(1.37) 3738.44(14969.79) 
Site76 0.34(2.88) 0.00(13382.67) 1.30(2.09) 16409.21(20955.85) 
Site99 0.14(17.36) 0.00(291.76) 0.98(2.73) 39683.01(180540.26) 
Site100 0.42(4.13) 0.00(178910.81) 0.95(2.90) 26716.41(73802.78) 

2016–2018         
Site36 0.13(1.08) 0.00(12965.15) 0.49(1.60) 141.53(110.65) 
Site56 0.07(0.82) 0.00(15.73) 0.34(0.37) 33.56(59.37) 
Site57 0.49(0.82) 0.00(2772.91) 0.78(0.67) 1486.87(4941.01) 
Site73 0.09(1.50) 0.00(3005.43) 0.46(1.05) 767.26(353.53) 
Site76 0.09(0.58) 0.00(55.24) 0.52(0.61) 26.36(78.05) 
Site99 0.12(1.28) 0.00(236995.34) 0.91(1.54) 863788.14(569454.77) 
Site100 0.29(1.47) 0.00(874.72) 0.78(1.47) 2763.66(6897.85) 
 
a ANN = Artificial Neural Network; 

b GBM = Gradient Boosting Machine; 

c MLR-AL = Multiple Linear Regression with adaptive LASSO; 

d PLSR = Partial Least Squares Regression. 
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TABLE B.4 Values of the accuracy for each of the seven 
water quality sampling sites during training and testing 
phases based on a 15-feature model. Numbers inside the 
parentheses represent RMSE values for the testing phase. 

 
 

Accuracy 
 
2013–2015 ANNa GBMb MLR-ALc PLSRd 
     
Site36 1.00 (0.60) 1.00 (0.80) 1.00 (0.40) 0.90 (1.00) 
Site56 1.00 (0.57) 1.00 (1.00) 0.86 (0.71) 0.64 (0.57) 
Site57 0.93 (0.63) 1.00 (0.75) 0.67 (0.50) 0.67 (0.50) 
Site73 0.95 (0.40) 1.00 (0.80) 0.90 (0.80) 0.60 (0.40) 
Site76 0.97 (0.63) 1.00 (0.75) 0.83 (0.50) 0.66 (0.63) 
Site99 0.95 (0.40) 1.00 (0.80) 0.85 (0.60) 0.70 (0.60) 
Site100 0.85 (0.00) 1.00 (0.60) 0.80 (0.60) 0.60 (0.40) 

2016–2018         
Site36 0.85 (0.67) 0.6 (1.00) 0.70 (0.50) 0.75(0.83) 
Site56 1.00 (0.86) 1.00 (1.00) 0.93 (1.00) 0.67 (1.00) 
Site57 0.85 (0.71) 1.00 (1.00) 0.95 (0.40) 0.89 (0.71) 
Site73 0.95 (0.83) 1.00 (0.60) 0.80 (0.50) 0.95 (0.67) 
Site76 0.89 (0.86) 1.00 (1.00) 0.85 (0.86) 0.85 (1.00) 
Site99 1.00 (0.83) 1.00 (0.40) 0.90 (0.50) 0.45 (0.67) 
Site100 0.95 (0.33) 1.00 (0.83) 0.86 (0.83) 0.76 (0.50) 
 
a ANN = Artificial Neural Network; 

b GBM = Gradient Boosting Machine; 

c MLR-AL = Multiple Linear Regression with adaptive LASSO; 

d PLSR = Partial Least Squares Regression. 
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 The hydraulic modeling for the years 2014–2018 was developed and completed using the 
calibrated and verified base hydraulic model for 2013. The base model was built on earlier work 
of Dr. Charles Melching (CAWS DuFlow model). The 2007–2008 CAWS DuFlow model was 
provided by the MWRD. The original model network used the Chicago Sanitary and Ship Canal 
(CSSC) at Romeoville, IL (USGS gauging station number 05536995) as a downstream boundary 
condition. However, the construction at the U.S. Army Corps of Engineers of an electric fish 
barrier in 2006 led to cessation of streamflow monitoring at the gauge. Therefore, the gauge on 
CSSC near Lemont, IL (05536890) was used as the new downstream boundary in this project 
(Figure 13). 
 
 Accordingly, the DuFlow network was modified to represent the new boundary 
conditions. The hydraulic model accounted for the CAWS system’s major inflows and outflows. 
Major inflows are influenced by control structures, pumping stations, tributaries, and CSO 
discharges. Boundary conditions for model verification and use were set using data collected by 
the USGS and the MWRDGC at the three lake front control structures, the Lockport Controlling 
Works and the major and minor tributary flows. The control structures include Wilmette 
Pumping Station, Chicago River Controlling Works, and T.J. O’Brien Lock and Dam. Pumping 
stations include the Racine Avenue Pumping Station, NB pumping station and 125th pumping 
stations. Major tributaries include the North Branch Chicago River (NBCR) at Albany Ave. 
(USGS removed this in April 2018 so the site at N. Pulaski was considered for 2018 period), 
Little Calumet (LC), Grand Calumet (USGS ceased recording discharge at this site in 2016 so 
stage data was estimated for the years 2016, 2017, and 2018 using previous records), as well as 
Calumet, Stickney, and O’Brien WRP effluents. While minor tributaries include Tinley, 
Midlothian, Mill, Navajo, Natalie, and East and West Stony creeks as long as 44 representative 
CSO discharge points. 
 
 Local temporal relationships were established using data recorded immediately before 
and after the missing data to determine missing stage and flow data. It is necessary to estimate 
the inflows from ungaged tributary watersheds. Flows on Midlothian Creek were used to 
estimate flows on ungaged tributaries on an area-ratio basis (discharge for the ungagged tributary 
watersheds were estimated using area ratio of the total area to the gaged drainage area for 
Midlothian and Tinley Creeks (Alp, E., and Melching, C.S. 2006). The drainage area ratios for 
the ungaged tributaries compared to the Midlothian Creek drainage area are listed in Table C.1. 
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TABLE C.1 Drainage area ratios for 
the ungaged tributaries compared to the 
Midlothian Creek drainage area. 

Stream Ungaged 

 
Ratio with 

Midlothian* 
  
Mill Creek West 0.55 
Stony Creek West 1.086 
Cal-Sag Watershed East 0.246 
Navajo Creek 0.137 
Stony Creek East 0.486 
Ungaged Des Plaines Watershed 0.703 
Calumet Union Ditch 1.168 
Cal-Sag Watershed West 0.991 
 
* The gaged Midlothian Creek drainage area is 

12.6 mi2, but these ratios are computed to the 
total Midlothian Creek drainage area of 
20 mi2. The total flow for both Midlothian 
and Tinley Creeks was determined by area 
ratio of the total drainage area to the gaged 
drainage area, 12.6 mi2 and 11.2 mi2 for 
Midlothian and Tinley Creeks, respectively. 

 
 

Upstream and downstream boundary conditions included the North Shore Channel at 
Wilmette (05536101), Chicago River Main Stem at Columbus Drive (05536123), Calumet River 
at the T.J. O’Brien Lock and Dam (05536358), Racine Avenue Pump Station (RAPS), Little 
Calumet River at South Holland (05536290), and CSSC near Lemont (05536890). Stage (H) and 
discharge data (Q) were provided by MWRD, as was CSO event data. The approximately 200 
annual CSO events during 2014–2018 across CAWS were represented by a system of 44 
discharge points for each respective year. Flow at the locks was estimated by aggregating 
discharge hourly data due to navigation, blockages, leakages, and discretionary diversions. All 
stage data was referenced to the City of Chicago Datum of 579.48 ft. 
 
 

 
 
 The stage data on CSSC near Lemont was used as the only boundary condition. 
Therefore, the flow data at this station was used to validate the accuracy of the model. Model 
performance was evaluated using the Nash-Sutcliffe efficiency (-∞ ≤ NSE ≤ 1), the linear 
regression coefficient of determination (0 ≤ R2 ≤ 1), and the percent bias (-100 ≤ PBIAS ≤ 100). 
The optimal value is 1 for NSE and R2 and 0 for PBIAS. A positive or negative PBIAS is 
indicative of model under- or overprediction (Moriasi 2007). 
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Figure C.1, Figure C.2, Figure C.3, Figure C.4 and Figure C.5 visually compare 
streamflow observations (USGS data) and DuFlow simulations for a gage on the CSSC near 
Lemont, IL for the years 2014, 2015, 2016, 2017, 2018 respectively. The graphs and model 
performance metrics are indicative of DuFlow’s ability to capture both the magnitude and 
sequence of flows at this gaged station. To illustrate, in Figure C.5, for the modeling year 2018, 
the coefficient of determination of 0.83 (R2=0.83) indicates that the model captured 83% of the 
hourly streamflow variability. A PBIAS of 0.005% indicates that, on average, the model 
perfectly estimates hourly streamflow. A NSE of 0.80 indicates that the model performance is 
considered efficient. 
 
 

 

FIGURE C.1 Observed (USGS) and simulated (DuFlow) streamflow for the year 2014 on CSSC 
near Lemont (USGS gaging station 05536890). The simulation results are at an hourly time step. 
The bottom two graphs are magnifications of the two shaded regions in the top graph. 
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FIGURE C.2 Observed (USGS) and simulated (DuFlow) streamflow for the year 2015 on CSSC 
near Lemont (USGS gaging station 05536890). The simulation results are at an hourly time step. 
The bottom two graphs are magnifications of the two shaded regions in the top graph. 
 
 

 

FIGURE C.3 Observed (USGS) and simulated (DuFlow) streamflow for the year 2016 on CSSC 
near Lemont (USGS gaging station 05536890). The simulation results are at an hourly time step. 
The bottom two graphs are magnifications of the two shaded regions in the top graph. 
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FIGURE C.4 Observed (USGS) and simulated (DuFlow) streamflow for the year 2017 on CSSC 
near Lemont (USGS gaging station 05536890). The simulation results are at an hourly time step. 
The bottom two graphs are magnifications of the two shaded regions in the top graph. 
 
 

 

FIGURE C.5 Observed (USGS) and simulated (DuFlow) streamflow for the year 2018 on CSSC 
near Lemont (USGS gaging station 05536890). The simulation results are at an hourly time step. 
The bottom two graphs are magnifications of the two shaded regions in the top graph. 
 
 

 
 
Alp, E., and Melching, C. S. 2006. “Calibration of a model for simulation of water quality during 
unsteady flow in the Chicago Waterway System and application to evaluate use attainability 
analysis remedial actions.” Technical Rep. No. 18, Institute of Urban Environmental Risk 
Management, Marquette Univ., Milwaukee. 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

C-6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally blank 
 



Chicago Area Waterway System Microbiome Research July 2020 
Phase III Final Report 
 

D-1 

 
 
 

 
 

Sampling days (2nd, 3rd and 4th Monday of each month): 
 

• 250 mL and 1000mL sterile Nalgene Polypropylene Copolymer (PPCO) 
bottles for water sample collection. 

 
• 1 quart glass bottles for sediment collection for each sample. 

 
• Whirl Pak bags for each sample. 

 
• Sterile trays for each sample. 

 
• Sterile scoops for each sample. 

 
• Chain of Custody forms for both water and sediment samples. (See the 

attached electronic copies) 
 

Filtration equipment: 
 

• Vacuum Filter Manifold 
 

• Sterile Filter base and funnel 
 

• Sterile Millipore Polyvinylidene difluoride (PVDF), 0.22µm pore size, 47 mm 
diameter membrane filters. ( will change to sterile Mixed Cellulose Ester 
(MCE), 0.22µm pore size, 47 mm diameter membrane from 4/14/14) 

 
• Forceps 

 
Procedure to follow on the sampling day: 

 
For water/outfall samples: 
QC/Blank: 

 
• Transfer one sterile filter aseptically to the 50 mL tube as a filter blank with 

each batch of waterways samples filtered. (Please note that this could be the 
source of contamination as we used the same forceps to handle both 
waterways sample and a blank filter. We are going to keep separate forceps 
for blank in 2014.) 

 
• Equipment blank sample will be received in 250mL bottle on each sampling 

day. Filter 200mL sample and transfer to the tube, label and freeze it. 
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• Trip blank bottle with 100mL sterile milliq water will be sent with sampling 
crew on each sampling event. When received in the lab 100 mL will be 
filtered and filtered will be saved in the freezer. 

 
• Receive 1000 mL water sample for each sampling location, check the labels, 

COCs. 
 

• Filter 200 mL of water from each sample in duplicate using sterile membrane 
filter. Aseptically remove filter and put in sterile 50 mL blue cap tube. Label 
the tube with the corresponding LIMS #, sample location and date and freeze 
at -80°C immediately. 

 
• Record turbidity, conductivity and pH of all water samples collected. 

 
• Every Monday you will receive Calumet WRP and every Tuesday O’Brien 

WRP outfall sample in 1000 mL bottle, check COCs and filter 200 mL of 
sample in duplicate and freeze the filters in 50 mL tube at -80°C. 

 
For Wet/Dry Weather samples: 
 
• Filter 200 mL samples in duplicate and freeze the filters in 50 mL sterile tube 

at -80°C. If the sample is very turbid and having problem filtering, then 
just filter the sample for 30 minutes and then remove the filter and freeze 
it. Record the sample volume filtered on the tube. 

 
For sediment samples: 
 
• Receive 1 Quart bottle and 1 Whirl Pak bag of sediment sample for each 

location, check the labels and COCs. 
 

• Receive all the samples in the LIMS. If there is no sample collected 
immediately cancel the sample from the LIMS. 

 
• Aliquot approximately 1/3 of the sample from the quart bottle into the 

1 plastic half quart bottles. Attach the LIMS label for Hg analysis for that 
sample. 

 
• Attach all other LIMS labels (for Solids, Lachat (NH3/TKN), Metals) to 

1 quart glass bottle with rubber band and deliver both bottles to ALD- Log in 
area along with COCs. 

 
• Make copies of the COCs. 

 
• Take out approximately 20 wet gram of sediment sample from the Whirl Pak 

bag into a sterile 50 mL blue cap tube, label it with corresponding LIMS #, 
sample location and date and freeze it immediately at -80°C immediately. 
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• Use the remaining sample from Whirl Pak bag to carry out bacterial analysis 
by Colilert method. 

 
• Next day autoclave the whirl pak bag and discard them. 

 
For Raw Sewage samples: (from July 2014) 

 
• Last Monday of every month you will receive raw sewage sample from 

Calumet WRP and second Tuesday of each month O’Brien WRP Raw sample 
in 1000 mL bottle, check COCs and filter 30 mL of sample in duplicate and 
freeze the filters in 50 mL tube at -80°C. 

 
 

 
 

PURPOSE: The purpose of this protocol is to describe the Argonne National Laboratory 
recommended procedures for collecting and transporting fish sample collection to Analytical 
Microbiology Laboratory for metagenomic testing. These samples include whole fish and/or 
surface swabs. These samples are obtained from CAWS. 
 

RESPONSIBILITIES: It is the responsibility of Analytical Microbiology Laboratory 
personnel to advise Aquatic Ecology and Water Quality section staff collecting and transporting 
samples; as to these recommended procedures. Any deviations from this protocol should be 
reported on the chain of custody sheet. 
 

SUPPLIES: 
 

• Sterile 15ml falcon tube 
• Sterile cotton tipped swabs with wooden or plastic shafts 
• Sterile Whirl-pak bag 
• Gloves 
• Chain of Custody Sheets (COC) 

 
PROCEDURE: 

 
1. Use of personal protective equipment and precautions is recommended when 

collecting any fish specimen. 

2. For fish mucous sampling, 

2.1 Fish should be caught and handled with clean gloves. 

2.2 A dry sterile cotton swab should be swabbed against the fish for 10 seconds 
rotating the cotton swab over both sides of the fish including swabbing their 
mouths. 
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2.3 The sterile swab should be immediately placed into a sterile 15ml falcon tube. 
No buffer is needed to preserve the sample. 

2.4 If the wooden shaft is longer than the tube, break it off by bending it against the 
side of the tube. 

2.5 Cap the tube and then properly label with fish identification and collection date. 

2.6 Place the tubes in a sterile whirl-pak and seal properly to avoid any 
contamination. 

2.7 Place the whir-pak bag in a plastic bag. All tubes should be securely packed and 
sealed to prevent leakage that may occur when kept in a cooler filled with ice. 

2.8 Ensure that the tubes are not in direct contact with ice or water. Ice must be 
contained in a separate strong, plastic bag. Use generous quantities of ice in the 
cooler. 

3. Check and ensure the COC information for the following: 

3.1 Sample Collection ID, Date is identical to the sample tubes. 

3.2 Sample collector name and initial 

4. Keep COC related paperwork dry and separate from fish sample specimens. 

5. Use a new glove for each location and each fish swab collection. 

6. Samples transported to Analytical Microbiology Laboratory will be 
immediately checked and will be kept frozen at -80°C freezer until picked up 
by the Argonne Laboratory staff. 

 


