

Metropolitan Water Reclamation District of Greater Chicago

Welcome to the July Edition of the 2024 M&R Seminar Series

NOTES FOR SEMINAR ATTENDEES

- Remote attendees' audio lines have been muted to minimize background noise.
 For attendees in the auditorium, please silence your phones.
- A question and answer (Q/A) session will follow the presentation.
- For remote attendees, please use "Chat" only to type questions for the presenter. For other issues, please email Pam to SlabyP@mwrd.org.
 For attendees in the auditorium, please raise your hand and wait for the microphone to ask a verbal question.
- The presentation slides will be posted on the MWRD website after the seminar.
- This seminar has been approved by the ISPE for one PDH and approved by the IEPA for one TCH. Certificates will be issued only to participants who attend the entire presentation.

Wonho Song, Ph.D., P.E., BCEE Senior Engineer, Wastewater Research Section Los Angeles County Sanitation Districts Whittier, California

Wonho Song is a senior engineer at the Los Angeles County Sanitation Districts (LACSD), with over 30 years of technical experience at the LACSD and private consulting companies. Additionally, Wonho serves as an adjunct professor in the Department of Civil and Environmental Engineering at the University of Southern California (USC), where he has been teaching courses on water and wastewater treatment plant design. Wonho holds Bachelor of Science and Master of Science degrees in civil engineering from Korea University, a Master of Science degree in environmental engineering from City University of New York, and a Ph.D. in environmental engineering from USC.

A Pilot Study on Biotrickling Filters Using Synthetic Media for Design of Full-Scale Odor Control Facilities

MWRD Monitoring and Research Seminar

Warner Song July 2024

Los Angeles County Sanitation Districts (LACSD)

Wastewater Management:

- 11 wastewater treatment plants
- 1,400 miles of sewers
- Serving ~5.5 million people
- 850 square miles of service area

Solid Waste Management

- Landfills
- Recycling centers
- Converting Waste Into Resources
 - 100 mgd of recycled water
 - 67 megawatts of electricity

Los Coyotes Water Reclamation Plant (LCWRP)

- 38 mgd capacity plant
- Odor complaints from neighbors and nearby commuters
- Planning is underway for an odor control facility

Current Odor Control System at LCWRP

- Activated Sludge Diffusion
 - Collects odorous air, directs it to the suction side of aeration blowers, and diffuses it into aeration tanks
 - Poorly designed ducting layout
 - Corrosive air incompatible with new tech aeration blowers
- Mobile Carbon Scrubbers
 - 8 ft diameter 3 feet deep carbon bed
 - Lasts 3 to 5 days to maintain outlet H₂S concentration less than 1 ppm

LACSD's Odor Control Facilities

- Stand-alone biotrickling filter (BTF)
- Combined BTF & carbon scrubber
 - → BTF removes most H_2S , and carbon scrubber removes residual H_2S and other odorous compounds.

LACSD's BTF Media

- Performance initially good but declined
- Heavy (stress on media support)
- Synthetic media
 - Installed different types at several plants
 - Need side-by-side testing to compare performance → Pilot testing

Schematic of Pilot-Scale BTF

Pilot-Scale BTFs at LCWRP

Diurnal Pattern at Low H₂S Loading

- All media achieve nearly complete H₂S removal
- Daily peaks in H₂S load and temperature

Diurnal Pattern at High H₂S Loading

S

Temperature

Representative BTF Performance Data

Synthetic Media Properties

Media	Foamed Glass	PU Foam	PE Mesh	PE Mesh	The second second second
Image					
Material	Calcium Silicate	Polyurethane	Polyethylene	Polyethylene	
Specific Surface Area	600 sf/cf	140-160 sf/cf	61 sf/cf	114 sf/cf	\leftarrow Biological growth
Porosity	80-90%(51%)	96-97% (96%)	92%	94%	← Contact time
Unit Cost	\$10/cf	\$25/cf	\$48/cf	\$50/cf]

Poor performance of foamed glass is unexpected

Porosity: spec of 80-90% vs 51% measured

Virgin vs Used Foamed Glass

- □ Biofilm on external surface only → Internal pores are inaccessible
- □ Actual residence time (51% of porosity) → e.g., $51\% \times 14$ s of EBRT = 7.1 s

Permeability Assessment of Foamed Glass using Dye

After 1 Day

After 1 Week

After 2 Weeks

After 4 Weeks

Dye gradually penetrated over time but didn't reach internal pores
 Internal pores, along with their associated surface area, are inaccessible to water

Cut Faces of Virgin and Used PU Foam

Biofilms on both (i) External surface and (ii) Internal pore surface
 96% of porosity allows effective residence time close to EBRT
 e.g., Actual residence time = 96% × 14 s of EBRT = 13.4 s

H₂S Removal vs H₂S Loading

- H₂S removal declines at high H₂S loadings
- Foamed-glass showed
 the biggest drop in
 removal efficiency
- Can predict the BTFperformance with theselected media

Elimination Capacity (EC) versus H₂S Loading

Temperature Influence on H₂S EC

- Higher and less variable EC at higher temperatures
- PU foam most consistent, then PE mesh, then foamed glass at various
 H₂S loading and ambient temperature (diurnal and seasonal variations)

Visual Inspection of Used Media

No signs of media
 compression,
 deformation, or
 deterioration

More biofilm and elemental sulfur on the bottom

Cost-Effective Media Selection

□ Warren Facility E3 Odor Control Facility

- H₂S loading: ~13 g/m³-h
- Media bed depth: 12.5 ft
- Installed foamed glass
- Achieved > 98% removal over last 4 years
 - ✓ Inlet $H_2S = 50-300 \text{ ppmv}$
 - ✓ Outlet H_2 S ≤ 1 ppmv
- LCWRP Odor Control Facility
 - H₂S loading: ~60 g/m³-h
 - Recommend PU foam or PE mesh, to enable longer carbon service life

2 Dual-Bed BTFs vs 1 Triple-Bed BTF

	Two BTFs	One BTF			
	(Dual-Bed)	(Triple-Bed)			
Footprint	2×	1×			
Airflow per Vessel	1×	2×			
Superficial Velocity ^a	1×	2×			
H ₂ S Load Per Vessel ^b	1×	2×			
^a Velocity ∞ Headloss ^b Load ∞ Fouling potential					

Carbon Scrubbers

Necessity

- Always meet the AQMD H₂S limit of 0.5 1 ppmv H₂S?
- Daily H₂S breakthrough in BTF outlet?
- Redundancy
 - Frequency of carbon changeout
- Single-Bed vs Dual-Bed
 - Dual-bed may lower capital cost and footprint required, but it is difficult to replace carbon media in the bottom bed

Dual-Bed Carbon Scrubber

Single-Bed Carbon Scrubber

Breakthrough Time for Activated Carbon

GAC	Unit Cost (\$/lb)	Adsorption Capacity (g-H ₂ S/mL)	Breakthrough Time (days)
Regular Coconut Shell	\$1.95	0.03	3 – 5
Caustic Impregnated	\$2.62	0.3	49 – 62
Extruded Cylindrical Pellet	\$2.15	0.2	77 – 96

Notes:

- Mean particle diameter: 4 mm
- Regeneration cost: \$0.55/lb

□ Worth considering alternative carbons even without carbon regeneration

Proposed Design

Unit	Description	Value	
BTF (2 duty)	Media bed diameter (feet)	12	
	Media bed depth (feet)	12.4 (Typ. <7)	
	EBRT (sec)	14	BIDITIER Z G-168-02 CARBON CAR
	Superficial velocity (ft/min)	53 (Typ. 50-100)	
Carbon Scrubber (2 duty)	Bed diameter (feet)	12	Contraction of the second seco
	Carbon bed depth (feet)	3	BIOTRICKLING FILTER 1 S-168-07
	EBRT (sec)	3.4 (Typ. >3)	The second secon
	Superficial velocity (ft/min)	53 (Typ. 50-60)	
Natas			Ita

Notes:

- Design based on air flow rate of 12,000 cfm
- Maximum bed diameter for truck delivery = 12 ft

Cost Analysis for BTF Media and Activated Carbon

BTF media	Unit	PU Foam (\$25/ft ³)	PE Mesh (\$50/ft³)	Foamed Glass (\$10/ft ³)
Annual Cost for BTF Media	\$/year	7,000	14,000	2,800
Annual Cost for BTF Media & Regular Carbon (\$1.95/lb)	\$/year	14,700	23,900	83,100
Annual Cost for BTF Media & Extruded Pellet Carbon (\$2.15/lb)	\$/year	10,700	18,700	41,300

- PU Foam and Extruded Pellet Carbon is best combination
- Higher cost of PU foam or PE Mesh would be offset by lower annual cost for carbon

Conclusions

Under low H₂S loading, similar performance by all three media with nearly complete removal

- Under varying H₂S loading and temperature conditions, most consistent and highest H₂S removal by PU foam, then PE mesh, then foamed glass
- Differences in performance appear related to media properties: better performance with higher **accessible specific surface area** and **porosity**
- Selecting the appropriate BTF media based on the estimated H₂S loading ensures reliable and cost-effective odor control

Questions?

Warner Song wsong@lacsd.org

