

Metropolitan Water Reclamation District of Greater Chicago

# Welcome to the May Edition of the 2024 M&R Seminar Series

#### **NOTES FOR SEMINAR ATTENDEES**

- Remote attendees' audio lines have been muted to minimize background noise. For attendees in the auditorium, please silence your phones.
- A question and answer session will follow the presentation.
- For remote attendees, please use the "<u>Chat</u>" feature to ask a question via text to "Host." For attendees in the auditorium, please raise your hand and wait for the microphone to ask a verbal question.
- The presentation slides will be posted on the MWRD website after the seminar.
- This seminar has been approved by the ISPE for one PDH and approved by the IEPA for one TCH. Certificates will only be issued to participants who attend the entire presentation.

#### Yi Wang, Ph.D. Associate Professor, Precision Agriculture Department of Plant and Agroecosystem Sciences University of Wisconsin - Madison



Dr. Yi Wang is an associate professor in precision agriculture in the department of plant and agroecosystem sciences, University of Wisconsin-Madison. Dr. Wang received a Bachelor of Science in Biological Science from Nanjing Agricultural University, Jiangsu, China, and a Ph.D. in Plant Genetics, from the University of Wisconsin-Madison. Dr. Wang's research focuses on using AI-driven techniques including machine learning, drone-based hyperspectral spectroscopy, and robotics to increase crop yield and improve agricultural sustainability.

# Using Hyperspectral Remote Sensing on Farmland for Reducing Environmental Impacts

Yi Wang, Trevor Crosby, Alfadhl Alkhaled, Taqdeer Gill, Ophelia Tsai, Guolong Liang Department of Plant and Agroecosystem Sciences

University of Wisconsin – Madison

# Background



- Agricultural sustainability requires efficient use of resources (water, fertilizer, pesticide) to reduce impact on the environment
- Traditional methods to monitor plant growth is destructive, laborintensive, time-consuming, and cannot cover spatio-temporal variability
- Using AI-driven techniques could build robust models that predict crop growth and yield using sensor-based data, which will provide precise information about resource application, and avoid excessive use that results in environmental degradation



|                                                 | Dry weight basis (% NO <sub>3</sub> –N)     |                                  |                    |  |  |  |  |
|-------------------------------------------------|---------------------------------------------|----------------------------------|--------------------|--|--|--|--|
| Stage of<br>growth<br>(days after<br>emergence) | Norkotah<br>Norland<br>Atlantic<br>Kennebec | Shepody<br>R. Burbank<br>Snowden | Onaway<br>Superior |  |  |  |  |
| 30                                              | 2.5-2.8                                     | 2.0-2.3                          | 2.3-2.5            |  |  |  |  |
| 40                                              | 2.3-2.5                                     | 1.7-2.2                          | 2.0-2.3            |  |  |  |  |
| 50                                              | 1.8-2.3                                     | 1.2-1.6                          | 1.5–1.9            |  |  |  |  |
| 60                                              | 1.3-1.9                                     | 0.8-1.1                          | 0.9-1.2            |  |  |  |  |
| 70                                              | 0.8-1.1                                     | 0.5-0.8                          | 0.4-0.6            |  |  |  |  |



#### Nitrate in drinking water around Wisconsin



CREDIT: Katie Kowalsky/Wisconsin Center for Investigative Journalism

SOURCE: Well Water Quality Viewer, University of Wisconsin-Stevens Point's Center for Watershed Science and Education. Private Drinking Water Quality in Rural Wisconsin, Journal of Environmental Health, 2013.

# Use Hyperspectral Imaging to Predict Potato Aboveground and Underground Traits



# **Plants have Unique Spectral Signatures**



Atmospheric effect on radiation measured by remote sensors

# Spectral signature and plant traits

- Spectral biological relationship
- Visible-to-near infrared (VNIR)
  - Chlorophyll activity and canopy density
- Short wave infrared (SWIR)
  - Water content
  - Biomass



Introduction Agronomy Modeling Conclusions

# Experimental Design

- Two growing seasons 2020, 2021
- Russet Burbank (RB) and Soraya (S)
- Four nitrogen rates + four blocks
  - Varied amount + timing
- Sampling occurred weekly from late June to August
  - Petiole, whole leaf, vine, and tuber N
  - LAI, specific gravity, yield
- Harvested in Mid-September
  - Yield, N removal, specific gravity



Modeling

Conclusions

# Experimental Design – Imaging & Modeling



## Imagery and Ground Truthing Timeline In-Season Predictions



Introduction Agronomy Modeling Conclusions

## Imagery and Ground Truthing Timeline At-Harvest Predictions



Introduction Agronomy Modeling Conclusions

# In-Season Trait Predictions (Full Spectrum)





Introduction

Agronomy

Modeling

Conclusions



Introduction

Agronomy

Modeling

Conclusions

## At-Harvest Trait Predictions





Introduction

Agronomy

Modeling

Conclusions

#### Predicted Petiole Nitrate-N Map





Introduction

Agronomy

Modeling

Conclusions

#### Predicted In-Season Yield



Introduction

#### Predicted At-Harvest Marketable Yield



Conclusions

Modeling

Agronomy

# Conclusions

- Multi-year and multi-growth stage PLSR models provided moderate to accurate predictions of both aboveground and underground potato traits using hyperspectral imagery
  - In-season N status and yield
  - At-harvest yield and quality

# Using a multi-year dataset to test different ML inputs for predicting potato response to nitrogen





# Study design: 5 N rates, 4 varieties, 4 replications, 2018 – 2020



# **RGB** Orthomosaic





# Vegetation indices and machine learning models

- Vegetation indices (VIs) are mathematical combinations of reflectance at two to five spectral bands
- VIs are designed to highlight particular biophysical or biochemical properties of vegetation
- Six different machine learning models were used including random forest (RF), support vector machine (SVM), k-nearest neighbor (kNN), etc.



#### Petiole nitrate-N

Coefficient of determination, R<sup>2</sup>

#### Whole leaf total N

**Final yield** 

| Plant Traits       | Year/ Year Combination | Best Model | R <sup>2</sup> |
|--------------------|------------------------|------------|----------------|
|                    | 2018                   | kNN        | 0.381          |
|                    | 2019                   | XGB        | 0.744          |
| Petiole nitrate-N  | 2020                   | XGB        | 0.563          |
|                    | 2018 & 2019            | RF         | 0.829          |
|                    | 2018, 2019 & 2020      | Linear     | 0.476          |
|                    | 2018                   | RF         | 0.782          |
|                    | 2019                   | SVM        | 0.796          |
| Whole leaf total N | 2020                   | XGB        | 0.601          |
|                    | 2018 & 2019            | RF         | 0.877          |
|                    | 2018, 2019 & 2020      | Linear     | 0.487          |
|                    | 2018                   | RF         | 0.589          |
|                    | 2019                   | XGB        | 0.570          |
| Final yield        | 2020                   | RF         | 0.654          |
|                    | 2018 & 2019            | Linear     | 0.546          |
|                    | 2018, 2019 & 2020      | RF         | 0.661          |







# Conclusion

- Model need GEM and spectral data to generate good prediction results
- Best performing machine learning models depend on the year
- Yield gain in response to N fertilization could be predicted across the three years, but response of in-season crop N status to supplemental N application showed high year-to-year variations

# Using hyperspectral imaging and ML for predicting responses of snap beans and kidney beans to nitrogen



# **Field Design**

• Planting: June 02<sup>nd</sup>, 2022

WISCONSIN

- Final harvest was conducted on August 09<sup>th</sup> 2022
- Cultivars: DM 88 and Huntington
- Nitrogen fertilizer rates included:

|     | Planting | V2-V3 growth stage | V7-V8 growth stage |
|-----|----------|--------------------|--------------------|
|     | Kg N     | ha <sup>-1</sup>   |                    |
| 22  | 22       | 0                  | 0                  |
| 56  | 22       | 17                 | 17                 |
| 84  | 22       | 31                 | 31                 |
| 112 | 22       | 45                 | 45                 |
| 140 | 22       | 59                 | 59                 |
| 168 | 22       | 73                 | 73                 |



# Timeline





# Methodology

Hyperspectral imagery: HySpex

| Specifications                       | VNIR-<br>1800 | SWIR-384  |
|--------------------------------------|---------------|-----------|
| Spectral range<br>(nm)               | 400–<br>1000  | 953–2518  |
| FWHM (nm)                            | 3.26          | 5.45      |
| Number of bands                      | 186           | 288       |
| Spatial pixels                       | 1800          | 384       |
| FOV across<br>track (deg)            | 34            | 32        |
| IFOV<br>across/along<br>track (mrad) | 0.32/0.<br>64 | 1.46/1.46 |

**Image processing**: Sensor boresighting, radiometric calibration, smileeffect correction, geometric correction, atmospheric correction, (BRDF) correction, spectral smoothing and data extraction, vector normalization

QGIS to draw polygons to extract reflectance at plot level





# **Crop Yield Increased at Higher N Treatments**

**Snap Beans** 





# **Higher Nitrogen Rate had Higher Leaf N (%)**



## **Spectral Signature Varies Across Different N Treatments**





# Hyperspectral Imagery Along With G E M Factors Best Predict Snap Bean Yield (R<sup>2</sup>) Snap Beans

| Growth Stage                    | V4-V5 | V6    | R1    | R2-R3 | R4-R5 | R6    |
|---------------------------------|-------|-------|-------|-------|-------|-------|
| DAP                             | 25    | 37    | 42    | 50    | 56    | 64    |
| 20 Best Wavelengths + G + E + M | 0.763 | 0.805 | 0.657 | 0.696 | 0.748 | 0.748 |
| 20 Best Wavelengths + G         | 0.479 | 0.228 | 0.271 | 0.671 | 0.723 | 0.733 |
| 20 Best Wavelengths + E         | 0.176 | 0.195 | 0.267 | 0.589 | 0.647 | 0.611 |
| 20 Best Wavelengths + M         | 0.418 | 0.720 | 0.495 | 0.602 | 0.658 | 0.640 |
| 20 Best Wavelengths             | 0.189 | 0.226 | 0.267 | 0.593 | 0.652 | 0.602 |



# Different Wavelengths Correlate With Leaf Nitrogen Content (%) at Different Growth Stages Snap Beans





# Prediction of In-Season Leaf N (%) (R<sup>2</sup>)

| Growth Stage                    | <b>R1</b> | R2-R3 |
|---------------------------------|-----------|-------|
| DAP                             | 42        | 50    |
| 20 Best Wavelengths + G + E + M | 0.712     | 0.676 |
| 20 Best Wavelengths + G         | 0.637     | 0.697 |
| 20 Best Wavelengths + E         | 0.665     | 0.633 |
| 20 Best Wavelengths + M         | 0.701     | 0.609 |
| 20 Best Wavelengths             | 0.669     | 0.636 |



**Snap Beans** 



#### **Hyperspectral Imagery Along With G E M Factors Kidney Beans Best Predict Kidney Bean Yield (R<sup>2</sup>)**

| Growth Stage                    | V4-V5 | V6    | R1    | R2-R3 | R4-R5 | R6    | R7    | <b>R8</b> | Senescence |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------|------------|
| DAP                             | 25    | 37    | 42    | 50    | 56    | 64    | 68    | 81        | 90         |
| 20 Best Wavelengths + G + E + M | 0.328 | 0.203 | 0.506 | 0.305 | 0.308 | 0.158 | 0.390 | 0.313     | 0.278      |
| 20 Best Wavelengths + G         | 0.118 | 0.199 | 0.412 | 0.210 | 0.333 | 0.057 | 0.371 | 0.303     | 0.245      |
| 20 Best Wavelengths + E         | 0.149 | 0.150 | 0.330 | 0.283 | 0.292 | 0.111 | 0.366 | 0.136     | 0.193      |
| 20 Best Wavelengths + M         | 0.295 | 0.171 | 0.397 | 0.282 | 0.266 | 0.089 | 0.384 | 0.193     | 0.213      |
| 20 Best Wavelengths             | 0.099 | 0.110 | 0.329 | 0.282 | 0.291 | 0.018 | 0.365 | 0.137     | 0.193      |

Tagdeer Gill 2022 ©

#### **Different Wavelengths Correlate With Leaf Nitrogen Content (%) at Different Growth Stages Kidney Beans**



42 DAP (R1 Growth Stage)



Tagdeer Gill 2022 ©

# Prediction of In-Season Leaf N (%) (R<sup>2</sup>)

**Kidney Beans** 

| Growth Stage                    | <b>R1</b> | R2-R3 |
|---------------------------------|-----------|-------|
| DAP                             | 42        | 50    |
| 20 Best Wavelengths + G + E + M | 0.578     | 0.513 |
| 20 Best Wavelengths + G         | 0.564     | 0.514 |
| 20 Best Wavelengths + E         | 0.568     | 0.514 |
| 20 Best Wavelengths + M         | 0.580     | 0.511 |
| 20 Best Wavelengths             | 0.570     | 0.512 |



# **Discussion & Conclusion**

- Higher N resulted in:
  - Higher bean yield, but the response is variety-dependent
  - Higher total N% in leaves
  - Different spectral signatures in plant canopies
- Machine learning algorithm can simulate snap bean and kidney bean response to different N fertilization treatments, but need both GEM and plant spectral signatures for better prediction results
- Snap beans and kidney beans showed difference in response to N and their spectral signatures







### United States Department of Agriculture National Institute of Food and Agriculture

#### WISCONSIN FERTILIZER RESEARCH COUNCIL



